喵ID:NyAccM免责声明

Optimized pulsed write schemes improve linearity and write speed for low-power organic neuromorphic devices

基本信息

DOI:
10.1088/1361-6463/aabe70
发表时间:
2018-06-06
影响因子:
3.4
通讯作者:
Salleo, Alberto
中科院分区:
物理与天体物理3区
文献类型:
Article
作者: Keene, Scott T.;Melianas, Armantas;Salleo, Alberto研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Neuromorphic devices are becoming increasingly appealing as efficient emulators of neural networks used to model real world problems. However, no hardware to date has demonstrated the necessary high accuracy and energy efficiency gain over CMOS in both (1) training via backpropagation and (2) in read via vector matrix multiplication. Such shortcomings are due to device non- idealities, particularly asymmetric conductance tuning in response to uniform voltage pulse inputs. Here, by formulating a general circuit model for capacitive ion-exchange neuromorphic devices, we show that asymmetric nonlinearity in organic electrochemical neuromorphic devices (ENODes) can be suppressed by an appropriately chosen write scheme. Simulations based upon our model suggest that a nonlinear write- selector could reduce the switching voltage and energy, enabling analog tuning via a continuous set of resistance states (100 states) with extremely low switching energy (similar to 170 fJ.mu m(-2)). This work clarifies the pathway to neural algorithm accelerators capable of parallelism during both read and write operations.
神经形态器件作为用于对现实世界问题进行建模的神经网络的高效模拟器,正变得越来越有吸引力。然而,到目前为止,还没有任何硬件在(1)通过反向传播进行训练以及(2)通过向量矩阵乘法进行读取这两方面都展示出相对于CMOS所必需的高精度和能效提升。这些缺陷是由于器件的非理想性,特别是对均匀电压脉冲输入响应的不对称电导调节。在此,通过为电容性离子交换神经形态器件建立一个通用电路模型,我们表明有机电化学神经形态器件(ENODes)中的不对称非线性可以通过适当选择的写入方案来抑制。基于我们模型的模拟表明,一个非线性写入选择器可以降低开关电压和能量,从而能够通过一组连续的电阻状态(100个状态)进行模拟调节,且开关能量极低(类似于170飞焦每平方微米)。这项工作阐明了通往在读写操作过程中都能够并行的神经算法加速器的途径。
参考文献(26)
被引文献(0)

数据更新时间:{{ references.updateTime }}

关联基金

E2CDA: Type II: A new non-volatile electrochemical transistor as an artificial synapse: device scaling studies
批准号:
1739795
批准年份:
2017
资助金额:
21.01
项目类别:
Continuing Grant
Salleo, Alberto
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓