喵ID:Np5Ftb免责声明

MetAssign: probabilistic annotation of metabolites from LC-MS data using a Bayesian clustering approach.

基本信息

DOI:
10.1093/bioinformatics/btu370
发表时间:
2014-10
期刊:
Bioinformatics (Oxford, England)
影响因子:
--
通讯作者:
Breitling R
中科院分区:
其他
文献类型:
Journal Article
作者: Daly R;Rogers S;Wandy J;Jankevics A;Burgess KE;Breitling R研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Motivation: The use of liquid chromatography coupled to mass spectrometry has enabled the high-throughput profiling of the metabolite composition of biological samples. However, the large amount of data obtained can be difficult to analyse and often requires computational processing to understand which metabolites are present in a sample. This article looks at the dual problem of annotating peaks in a sample with a metabolite, together with putatively annotating whether a metabolite is present in the sample. The starting point of the approach is a Bayesian clustering of peaks into groups, each corresponding to putative adducts and isotopes of a single metabolite. Results: The Bayesian modelling introduced here combines information from the mass-to-charge ratio, retention time and intensity of each peak, together with a model of the inter-peak dependency structure, to increase the accuracy of peak annotation. The results inherently contain a quantitative estimate of confidence in the peak annotations and allow an accurate trade-off between precision and recall. Extensive validation experiments using authentic chemical standards show that this system is able to produce more accurate putative identifications than other state-of-the-art systems, while at the same time giving a probabilistic measure of confidence in the annotations. Availability and implementation: The software has been implemented as part of the mzMatch metabolomics analysis pipeline, which is available for download at http://mzmatch.sourceforge.net/. Contact: Ronan.Daly@glasgow.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online.
动机:液相色谱与质谱联用使得生物样本代谢物成分的高通量分析成为可能。然而,所获得的大量数据可能难以分析,并且通常需要进行计算处理以了解样本中存在哪些代谢物。本文探讨了用代谢物对样本中的峰进行注释以及对代谢物是否存在于样本中进行推定注释的双重问题。该方法的起点是将峰进行贝叶斯聚类分组,每个组对应于单个代谢物的假定加合物和同位素。 结果:这里介绍的贝叶斯模型结合了每个峰的质荷比、保留时间和强度信息,以及峰间依赖结构模型,以提高峰注释的准确性。结果本身包含了对峰注释置信度的定量估计,并允许在精确率和召回率之间进行精确的权衡。使用真实化学标准品进行的大量验证实验表明,该系统能够比其他现有先进系统产生更准确的推定鉴定结果,同时对注释给出了置信度的概率度量。 可用性和实现:该软件已作为mzMatch代谢组学分析流程的一部分实现,可从http://mzmatch.sourceforge.net/下载。 联系人:Ronan.Daly@glasgow.ac.uk 补充信息:补充数据可在Bioinformatics在线获取。
参考文献(0)
被引文献(0)
In silico fragmentation for computer assisted identification of metabolite mass spectra.
DOI:
10.1186/1471-2105-11-148
发表时间:
2010-03-22
期刊:
BMC bioinformatics
影响因子:
3
作者:
Wolf S;Schmidt S;Müller-Hannemann M;Neumann S
通讯作者:
Neumann S
Automated workflows for accurate mass-based putative metabolite identification in LC/MS-derived metabolomic datasets.
DOI:
10.1093/bioinformatics/btr079
发表时间:
2011-04-15
期刊:
Bioinformatics (Oxford, England)
影响因子:
0
作者:
Brown M;Wedge DC;Goodacre R;Kell DB;Baker PN;Kenny LC;Mamas MA;Neyses L;Dunn WB
通讯作者:
Dunn WB
A statistically rigorous test for the identification of parent-fragment pairs in LC-MS datasets.
DOI:
10.1021/ac902361f
发表时间:
2010-03-01
期刊:
ANALYTICAL CHEMISTRY
影响因子:
7.4
作者:
Ipsen, Andreas;Want, Elizabeth J.;Lindon, John C.;Ebbels, Timothy M. D.
通讯作者:
Ebbels, Timothy M. D.
ProbMetab: an R package for Bayesian probabilistic annotation of LC-MS-based metabolomics
DOI:
10.1093/bioinformatics/btu019
发表时间:
2014-05-01
期刊:
BIOINFORMATICS
影响因子:
5.8
作者:
Silva, Ricardo R.;Jourdan, Fabien;Vencio, Ricardo Z. N.
通讯作者:
Vencio, Ricardo Z. N.
Construction of Confidence Regions for Isotopic Abundance Patterns in LC/MS Data Sets for Rigorous Determination of Molecular Formulas
DOI:
10.1021/ac101278x
发表时间:
2010-09-01
期刊:
ANALYTICAL CHEMISTRY
影响因子:
7.4
作者:
Ipsen, Andreas;Want, Elizabeth J.;Ebbels, Timothy M. D.
通讯作者:
Ebbels, Timothy M. D.

数据更新时间:{{ references.updateTime }}

关联基金

Unifying metabolome and proteome informatics
批准号:
BB/L018616/1
批准年份:
2014
资助金额:
18.39
项目类别:
Research Grant
Breitling R
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓