喵ID:M2nYQ1免责声明

Randomized Feature Engineering as a Fast and Accurate Alternative to Kernel Methods

随机特征工程作为核方法的快速而准确的替代方案

基本信息

DOI:
10.1145/3097983.3098001
发表时间:
2017
期刊:
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
影响因子:
--
通讯作者:
Huan Liu
中科院分区:
文献类型:
--
作者: Suhang Wang;C. Aggarwal;Huan Liu研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Feature engineering has found increasing interest in recent years because of its ability to improve the effectiveness of various machine learning models. Although tailored feature engineering methods have been designed for various domains, there are few that simulate the consistent effectiveness of kernel methods. At the core, the success of kernel methods is achieved by using similarity functions that emphasize local variations in similarity. Unfortunately, this ability comes at the price of the high level of computational resources required and the inflexibility of the representation as it only provides the similarity of two data points instead of vector representations of each data point; while the vector representations can be readily used as input to facilitate various models for different tasks. Furthermore, kernel methods are also highly susceptible to overfitting and noise and it cannot capture the variety of data locality. In this paper, we first analyze the inner working and weaknesses of kernel method, which serves as guidance for designing feature engineering. With the guidance, we explore the use of randomized methods for feature engineering by capturing multi-granular locality of data. This approach has the merit of being time and space efficient for feature construction. Furthermore, the approach is resistant to overfitting and noise because the randomized approach naturally enables fast and robust ensemble methods. Extensive experiments on a number of real world datasets are conducted to show the effectiveness of the approach for various tasks such as clustering, classification and outlier detection.
近年来,特征工程因其能够提高各种机器学习模型的有效性而受到越来越多的关注。尽管针对不同领域设计了特定的特征工程方法,但很少有方法能模拟核方法的持续有效性。从本质上讲,核方法的成功是通过使用强调相似性局部变化的相似性函数实现的。不幸的是,这种能力是以所需计算资源高以及表示缺乏灵活性为代价的,因为它只提供两个数据点的相似性,而不是每个数据点的向量表示;而向量表示可以很容易地用作输入,以便为不同任务的各种模型提供便利。此外,核方法也极易受到过拟合和噪声的影响,并且无法捕捉数据局部性的多样性。在本文中,我们首先分析核方法的内部工作原理和弱点,这为特征工程设计提供了指导。在该指导下,我们通过捕捉数据的多粒度局部性来探索随机方法在特征工程中的应用。这种方法在特征构建方面具有时间和空间高效的优点。此外,该方法对过拟合和噪声具有抵抗力,因为随机方法自然能够实现快速且稳健的集成方法。在多个真实世界数据集上进行了大量实验,以证明该方法对聚类、分类和异常检测等各种任务的有效性。
参考文献(3)
被引文献(8)
Multiple kernel learning, conic duality, and the smo algorithm
DOI:
10.1145/1015330.1015424
发表时间:
2004-01-01
期刊:
ICML
影响因子:
0
作者:
Bach, Francis R;Lanckriet, Gert RG;Jordan, Michael I
通讯作者:
Jordan, Michael I
Large Scale Multiple Kernel Learning
DOI:
发表时间:
2006-12
期刊:
J. Mach. Learn. Res.
影响因子:
0
作者:
S. Sonnenburg;Gunnar Rätsch;C. Schäfer;B. Scholkopf
通讯作者:
S. Sonnenburg;Gunnar Rätsch;C. Schäfer;B. Scholkopf

数据更新时间:{{ references.updateTime }}

Huan Liu
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓