喵ID:Lpl7U7免责声明

Leveraging time series analysis of radar coherence and normalized difference vegetation index ratios to characterize pre-failure activity of the Mud Creek landslide, California

基本信息

DOI:
10.5194/nhess-21-629-2021
发表时间:
2021-02-15
影响因子:
4.6
通讯作者:
Tiampo, Kristy
中科院分区:
地球科学3区
文献类型:
Article
作者: Jacquemart, Mylene;Tiampo, Kristy研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Assessing landslide activity at large scales has historically been a challenging problem. Here, we present a different approach on radar coherence and normalized difference vegetation index (NDVI) analyses - metrics that are typically used to map landslides post-failure - and leverage a time series analysis to characterize the pre-failure activity of the Mud Creek landslide in California. Our method computes the ratio of mean interferometric coherence or NDVI on the unstable slope relative to that of the surrounding hillslope. This approach has the advantage that it eliminates the negative impacts of long temporal baselines that can interfere with the analysis of interferometric synthetic aperture (InSAR) data, as well as interferences from atmospheric and environmental factors. We show that the coherence ratio of the Mud Creek landslide dropped by 50% when the slide began to accelerate 5 months prior to its catastrophic failure in 2017. Coincidentally, the NDVI ratio began a near-linear decline. A similar behavior is visible during an earlier acceleration of the landslide in 2016. This suggests that radar coherence and NDVI ratios may be useful for assessing landslide activity. Our study demonstrates that data from the ascending track provide the more reliable coherence ratios, despite being poorly suited to measure the slope's precursory deformation. Combined, these insights suggest that this type of analysis may complement traditional InSAR analysis in useful ways and provide an opportunity to assess landslide activity at regional scales.
大规模评估滑坡活动在历史上一直是一个具有挑战性的问题。在此,我们提出一种关于雷达相干性和归一化植被指数(NDVI)分析的不同方法——这些指标通常用于绘制滑坡发生后的地图——并利用时间序列分析来描述加利福尼亚州马德河滑坡发生前的活动情况。我们的方法计算不稳定斜坡上的平均干涉相干性或NDVI与周围山坡的相应值之比。这种方法的优势在于它消除了可能干扰干涉合成孔径雷达(InSAR)数据分析的长时间基线的负面影响,以及大气和环境因素的干扰。我们发现,在2017年马德河滑坡灾难性崩塌前5个月开始加速时,其相干性比率下降了50%。巧合的是,NDVI比率也开始近乎线性下降。在2016年该滑坡早期加速期间也出现了类似的情况。这表明雷达相干性和NDVI比率可能对评估滑坡活动有用。我们的研究表明,尽管升轨数据不太适合测量斜坡的前兆变形,但它能提供更可靠的相干性比率。综合来看,这些见解表明这种类型的分析可能以有用的方式补充传统的InSAR分析,并为在区域尺度上评估滑坡活动提供机会。
参考文献(60)
被引文献(0)

数据更新时间:{{ references.updateTime }}

Tiampo, Kristy
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓