喵ID:LhXR22免责声明

Symmetry Degree Measurement and its Applications to Anomaly Detection

对称度测量及其在异常检测中的应用

基本信息

DOI:
10.1109/tifs.2019.2933731
发表时间:
2020-01-01
影响因子:
6.8
通讯作者:
Gao, Lixin
中科院分区:
计算机科学1区
文献类型:
Article
作者: Qin, Tao;Liu, Zhaoli;Gao, Lixin研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Anomaly detection is an important technique used to identify patterns of unusual network behavior and keep the network under control. Today, network attacks are increasing in terms of both their number and sophistication. To avoid causing significant traffic patterns and being detected by existing techniques, many new attacks tend to involve gradual adjustment of behaviors, which always generate incomplete sessions due to their running mechanisms. Accordingly, in this work, we employ the behavior symmetry degree to profile the anomalies and further identify unusual behaviors. We first proposed a symmetry degree to identify the incomplete sessions generated by unusual behaviors; we then employ a sketch to calculate the symmetry degree of internal hosts to improve the identification efficiency for online applications. To reduce the memory cost and probability of collision, we divide the IP addresses into four segments that can be used as keys of the hash functions in the sketch. Moreover, to further improve detection accuracy, a threshold selection method is proposed for dynamic traffic pattern analysis. The hash functions in the sketch are then designed using Chinese remainder theory, which can analytically trace the IP addresses associated with the anomalies. We tested the proposed techniques based on traffic data collected from the northwest center of CERNET (China Education and Research Network); the results show that the proposed methods can effectively detect anomalies in large-scale networks.
异常检测是一种用于识别异常网络行为模式并控制网络的重要技术。如今,网络攻击在数量和复杂程度上都在增加。为了避免产生明显的流量模式并被现有技术检测到,许多新型攻击往往涉及行为的逐步调整,由于其运行机制,这些攻击总是会产生不完整的会话。因此,在这项工作中,我们利用行为对称度来描述异常情况,并进一步识别异常行为。我们首先提出一种对称度来识别由异常行为产生的不完整会话;然后我们使用一种草图来计算内部主机的对称度,以提高在线应用的识别效率。为了降低内存成本和冲突概率,我们将IP地址划分为四个段,这些段可用作草图中哈希函数的键。此外,为了进一步提高检测准确性,针对动态流量模式分析提出了一种阈值选择方法。然后利用中国剩余定理设计草图中的哈希函数,该函数能够解析地追踪与异常相关的IP地址。我们基于从中国教育和科研计算机网(CERNET)西北中心收集的流量数据对所提出的技术进行了测试;结果表明,所提出的方法能够有效地检测大规模网络中的异常。
参考文献(56)
被引文献(0)

数据更新时间:{{ references.updateTime }}

Gao, Lixin
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓