喵ID:KhDXrY免责声明

Clustering by genetic ancestry using genome-wide SNP data.

基本信息

DOI:
10.1186/1471-2156-11-108
发表时间:
2010-12-09
期刊:
影响因子:
2.9
通讯作者:
Sebastiani P
中科院分区:
生物学3区
文献类型:
Journal Article
作者: Solovieff N;Hartley SW;Baldwin CT;Perls TT;Steinberg MH;Sebastiani P研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Population stratification can cause spurious associations in a genome-wide association study (GWAS), and occurs when differences in allele frequencies of single nucleotide polymorphisms (SNPs) are due to ancestral differences between cases and controls rather than the trait of interest. Principal components analysis (PCA) is the established approach to detect population substructure using genome-wide data and to adjust the genetic association for stratification by including the top principal components in the analysis. An alternative solution is genetic matching of cases and controls that requires, however, well defined population strata for appropriate selection of cases and controls. We developed a novel algorithm to cluster individuals into groups with similar ancestral backgrounds based on the principal components computed by PCA. We demonstrate the effectiveness of our algorithm in real and simulated data, and show that matching cases and controls using the clusters assigned by the algorithm substantially reduces population stratification bias. Through simulation we show that the power of our method is higher than adjustment for PCs in certain situations. In addition to reducing population stratification bias and improving power, matching creates a clean dataset free of population stratification which can then be used to build prediction models without including variables to adjust for ancestry. The cluster assignments also allow for the estimation of genetic heterogeneity by examining cluster specific effects.
群体分层在全基因组关联研究(GWAS)中可能导致虚假关联,当单核苷酸多态性(SNP)的等位基因频率差异是由于病例组和对照组之间的祖先差异而非所关注的性状引起时,就会发生群体分层。主成分分析(PCA)是利用全基因组数据检测群体亚结构并通过在分析中纳入主要主成分来调整遗传关联以消除分层影响的既定方法。一种替代解决方案是对病例组和对照组进行遗传匹配,然而,这需要明确界定的群体分层以便恰当地选择病例组和对照组。 我们开发了一种新算法,基于PCA计算出的主成分将个体聚类为具有相似祖先背景的群体。我们在真实数据和模拟数据中证明了我们算法的有效性,并表明使用该算法所划分的聚类来匹配病例组和对照组可大幅降低群体分层偏差。通过模拟我们表明,在某些情况下我们方法的效能高于对主成分的调整。 除了降低群体分层偏差和提高效能外,匹配还创建了一个无群体分层的纯净数据集,该数据集随后可用于构建预测模型,而无需纳入用于调整祖先因素的变量。聚类分配还允许通过检查聚类特异性效应来估计遗传异质性。
参考文献(0)
被引文献(0)
A Randomization test for controlling population stratification in whole-genome association studies
DOI:
10.1086/521372
发表时间:
2007-11-01
期刊:
AMERICAN JOURNAL OF HUMAN GENETICS
影响因子:
9.8
作者:
Kimmel, Gad;Jordan, Michael I.;Karp, Richard M.
通讯作者:
Karp, Richard M.
A simple and improved correction for population stratification in case-control studies
DOI:
10.1086/516842
发表时间:
2007-05-01
期刊:
AMERICAN JOURNAL OF HUMAN GENETICS
影响因子:
9.8
作者:
Epstein, Michael P.;Allen, Andrew S.;Satten, Glen A.
通讯作者:
Satten, Glen A.
The quest for genetic determinants of human longevity: challenges and insights
DOI:
10.1038/nrg1871
发表时间:
2006-06-01
期刊:
NATURE REVIEWS GENETICS
影响因子:
42.7
作者:
Christensen, Kaare;Johnson, Thomas E.;Vaupel, James W.
通讯作者:
Vaupel, James W.
African genetic diversity: Implications for human demographic history, modern human origins, and complex disease mapping
DOI:
10.1146/annurev.genom.9.081307.164258
发表时间:
2008-01-01
期刊:
ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS
影响因子:
8.7
作者:
Campbell, Michael C.;Tishkoff, Sarah A.
通讯作者:
Tishkoff, Sarah A.
On the use of general control samples for genome-wide association studies: Genetic matching highlights causal variants
DOI:
10.1016/j.ajhg.2007.11.003
发表时间:
2008-02-01
期刊:
AMERICAN JOURNAL OF HUMAN GENETICS
影响因子:
9.8
作者:
Luca, Diana;Ringquist, Steven;Trucco, Massimo
通讯作者:
Trucco, Massimo

数据更新时间:{{ references.updateTime }}

关联基金

Genome-Wide Association Studies in Sickle Cell Anemia and in Centenarians
批准号:
7626008
批准年份:
2007
资助金额:
74.08
项目类别:
Sebastiani P
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓