喵ID:Kc4v5M免责声明

Competing Bandits in Non-Stationary Matching Markets

非平稳匹配市场中的竞争强盗

基本信息

DOI:
10.1109/tit.2024.3352228
发表时间:
2024
影响因子:
2.5
通讯作者:
Arya Mazumdar
中科院分区:
计算机科学2区
文献类型:
--
作者: A. Ghosh;Abishek Sankararaman;K. Ramchandran;Tara Javidi;Arya Mazumdar研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Understanding complex dynamics of two-sided online matching markets, where the demand-side agents compete to match with the supply-side (arms), has recently received substantial interest. To that end, in this paper, we introduce the framework of decentralized two-sided matching market under non stationary (dynamic) environments. We adhere to the serial dictatorship setting, where the demand-side agents have unknown and different preferences over the supply-side (arms), but the arms have fixed and known preference over the agents. We propose and analyze an asynchronous and decentralized learning algorithm, namely Non-Stationary Competing Bandits (NSCB), where the agents play (restrictive) successive elimination type learning algorithms to learn their preference over the arms. The complexity in understanding such a system stems from the fact that the competing bandits choose their actions in an asynchronous fashion, and the lower ranked agents only get to learn from a set of arms, not dominated by the higher ranked agents, which leads to forced exploration. With carefully defined complexity parameters, we characterize this forced exploration and obtain sub-linear (logarithmic) regret of NSCB. Furthermore, we validate our theoretical findings via experiments.
理解双边在线匹配市场的复杂动态(在该市场中,需求方主体竞争与供应方(资源)进行匹配)近来受到了广泛关注。为此,在本文中,我们引入了非平稳(动态)环境下的去中心化双边匹配市场框架。我们遵循序列独裁设置,即需求方主体对供应方(资源)具有未知且不同的偏好,而资源对主体具有固定且已知的偏好。我们提出并分析了一种异步去中心化学习算法,即非平稳竞争老虎机(NSCB),其中主体采用(受限的)连续淘汰式学习算法来了解他们对资源的偏好。理解此类系统的复杂性源于竞争的老虎机以异步方式选择其行动,且排名较低的主体只能从一组资源中学习,这些资源未被排名较高的主体所主导,这导致了强制探索。通过精心定义的复杂性参数,我们描述了这种强制探索,并获得了NSCB的次线性(对数)遗憾值。此外,我们通过实验验证了我们的理论发现。
参考文献(3)
被引文献(0)
On Abruptly-Changing and Slowly-Varying Multiarmed Bandit Problems
DOI:
10.23919/acc.2018.8431265
发表时间:
2018-02
期刊:
2018 Annual American Control Conference (ACC)
影响因子:
0
作者:
Lai Wei;Vaibhav Srivastava
通讯作者:
Lai Wei;Vaibhav Srivastava
Efficient Contextual Bandits in Non-stationary Worlds
非平稳世界中的高效上下文强盗
DOI:
发表时间:
2018
期刊:
Proceedings of Machine Learning Research
影响因子:
0
作者:
Luo, Haipeng;Wei, Chen-Yu;Agarwal, Alekh;Langford, John
通讯作者:
Langford, John

数据更新时间:{{ references.updateTime }}

Arya Mazumdar
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓