喵ID:KGR29v免责声明

Research on particle swarm optimization based clustering: A systematic review of literature and techniques

基本信息

DOI:
10.1016/j.swevo.2014.02.001
发表时间:
2014-08-01
影响因子:
10
通讯作者:
Rehman, Saeed Ur
中科院分区:
计算机科学1区
文献类型:
Review
作者: Alam, Shafiq;Dobbie, Gillian;Rehman, Saeed Ur研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Optimization based pattern discovery has emerged as an important field in knowledge discovery and data mining (KDD), and has been used to enhance the efficiency and accuracy of clustering, classification, association rules and outlier detection. Cluster analysis, which identifies groups of similar data items in large datasets, is one of its recent beneficiaries. The increasing complexity and large amounts of data in the datasets have seen data clustering emerge as a popular focus for the application of optimization based techniques. Different optimization techniques have been applied to investigate the optimal solution for clustering problems. Swarm intelligence (SI) is one such optimization technique whose algorithms have successfully been demonstrated as solutions for different data clustering domains. In this paper we investigate the growth of literature in SI and its algorithms, particularly Particle Swarm Optimization (PSO). This paper makes two major contributions. Firstly, it provides a thorough literature overview focusing on some of the most cited techniques that have been used for PSO-based data clustering. Secondly, we analyze the reported results and highlight the performance of different techniques against contemporary clustering techniques. We also provide an brief overview of our PSO-based hierarchical clustering approach (HPSO-clustering) and compare the results with traditional hierarchical agglomerative clustering (HAC), K-means, and PSO clustering. (C) 2014 Elsevier B.V. All rights reserved.
基于优化的模式发现已成为知识发现和数据挖掘(KDD)中的一个重要领域,并已被用于提高聚类、分类、关联规则和异常检测的效率和准确性。聚类分析是其近期的受益者之一,它用于识别大型数据集中相似数据项的群组。随着数据集日益复杂且数据量庞大,数据聚类已成为应用基于优化技术的一个热门焦点。不同的优化技术已被用于探究聚类问题的最优解。群体智能(SI)就是这样一种优化技术,其算法已成功地被证明可作为不同数据聚类领域的解决方案。在本文中,我们研究了群体智能及其算法,特别是粒子群优化(PSO)相关文献的增长情况。本文有两个主要贡献。首先,它提供了一个全面的文献综述,重点关注一些用于基于PSO的数据聚类且被引用次数最多的技术。其次,我们分析了所报道的结果,并强调了不同技术相对于当代聚类技术的性能。我们还简要概述了我们基于PSO的层次聚类方法(HPSO - 聚类),并将结果与传统的层次凝聚聚类(HAC)、K - 均值和PSO聚类进行了比较。© 2014 Elsevier B.V.保留所有权利。
参考文献(68)
被引文献(0)

数据更新时间:{{ references.updateTime }}

Rehman, Saeed Ur
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓