喵ID:K4efht免责声明

Research on Edge Detection of LiDAR Images Based on Artificial Intelligence Technology

基于人工智能技术的激光雷达图像边缘检测研究

基本信息

DOI:
10.23977/jipta.2024.070108
发表时间:
2024
期刊:
Journal of image processing theory and applications
影响因子:
--
通讯作者:
Ao Xiang
中科院分区:
文献类型:
--
作者: Haowei Yang;Liyang Wang;Jingyu Zhang;Yu Cheng;Ao Xiang研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

With the widespread application of Light Detection and Ranging (LiDAR) technology in fields such as autonomous driving, robot navigation, and terrain mapping, the importance of edge detection in LiDAR images has become increasingly prominent. Traditional edge detection methods often face challenges in accuracy and computational complexity when processing LiDAR images. To address these issues, this study proposes an edge detection method for LiDAR images based on artificial intelligence technology. This paper first reviews the current state of research on LiDAR technology and image edge detection, introducing common edge detection algorithms and their applications in LiDAR image processing. Subsequently, a deep learning-based edge detection model is designed and implemented, optimizing the model training process through preprocessing and enhancement of the LiDAR image dataset. Experimental results indicate that the proposed method outperforms traditional methods in terms of detection accuracy and computational efficiency, showing significant practical application value. Finally, improvement strategies are proposed for the current method's shortcomings, and the improvements are validated through experiments.
随着在自动驾驶,机器人导航和地形映射等领域的光检测和范围技术的广泛应用(LIDAR)技术,LIDAR图像中边缘检测的重要性变得越来越突出。处理激光雷达图像时,传统的边缘检测方法通常会面临准确性和计算复杂性的挑战。为了解决这些问题,本研究提出了一种基于人工智能技术的LIDAR图像的边缘检测方法。本文首先回顾了有关激光雷达技术和图像边缘检测的当前研究状态,引入了共同的边缘检测算法及其在LIDAR图像处理中的应用。随后,设计和实施了基于深度学习的边缘检测模型,通过预处理和增强LIDAR图像数据集来优化模型训练过程。实验结果表明,所提出的方法在检测准确性和计算效率方面优于传统方法,显示出显着的实际应用价值。最后,为当前方法的缺点提出了改进策略,并通过实验验证了这些改进。
参考文献(1)
被引文献(0)
LiDAR-based detection, tracking, and property estimation: A contemporary review
DOI:
10.1016/j.neucom.2022.07.087
发表时间:
2022-07
期刊:
Neurocomputing
影响因子:
6
作者:
M. Hasan;Junichi Hanawa;Riku Goto;R. Suzuki;Hisato Fukuda;Y. Kuno;Yoshinori Kobayashi
通讯作者:
M. Hasan;Junichi Hanawa;Riku Goto;R. Suzuki;Hisato Fukuda;Y. Kuno;Yoshinori Kobayashi

数据更新时间:{{ references.updateTime }}

Ao Xiang
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓