喵ID:JheJZr免责声明

基于神经网络和支持矢量机的多机动车车牌在线检测方法

基本信息

DOI:
10.16383/j.aas.c180753
发表时间:
2021
期刊:
自动化学报
影响因子:
--
通讯作者:
陈卫
中科院分区:
其他
文献类型:
--
作者: 刘进博;朱新新;伍越;杨凯;陈卫研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Aiming at the problem of multi-license plate recognition in road traffic, a fast and robust multi-license plate detection and recognition method is proposed, which includes two parts: multi-license plate detection and license plate character recognition. A BP (Back-Propagation) neural network model is constructed for color recognition, and combined with the image morphology operation method, candidate license plate targets are screened, and the real license plate targets are discriminated from the candidate license plate targets based on the support vector machine. Through contour size judgment and combined with the license plate size characteristics, the urban code character block, the provincial code character block and the 5-digit motor vehicle coding character block are segmented and extracted in turn, and finally the content of the character block is recognized based on the BP neural network. Based on the above principles, a robust automatic detection and recognition system for multi-motor vehicle license plates has been developed and experimentally tested in real scenes. The results show that: 1) Under the condition that the vehicle is traveling at a normal speed, the system can still ensure a license plate detection and recognition accuracy rate of more than 90%; 2) The system can realize simultaneous multi-license plate detection and recognition; 3) Under the experimental hardware configuration in this paper, the average detection and recognition time of a single image of the system is less than 130 ms, and the processing frequency is about 8 Hz.
针对道路交通多车牌识别问题,提出了一种快速鲁棒的多车牌检测识别方法,包括多车牌检测和车牌字符识别两部分:构造BP (Back-Propagation)神经网络模型用于颜色识别,结合图像形态学运算方法,筛选候选车牌目标,基于支持矢量机从候选车牌目标中判别真正的车牌目标;通过轮廓尺寸判断,并结合车牌尺寸特征,依次分割提取城市代码字符块、省份代码字符块及5位机动车编码字符块,最后基于BP神经网络识别字符块内容.基于上述原理,开发了鲁棒的多机动车车牌自动检测识别系统,并在真实场景中进行了实验测试,结果表明:1)车辆在正常速度行驶条件下,系统依然可以保证90%以上的车牌检测识别正确率;2)系统可实现同时多车牌检测识别;3)文中实验硬件配置下,系统单幅图像检测识别平均时间低于130 ms,处理频率约8 Hz.
参考文献(0)
被引文献(0)

数据更新时间:{{ references.updateTime }}

关联基金

基于机器学习的超高速流场中固体三维形貌在线测量方法研究
批准号:
11802321
批准年份:
2018
资助金额:
30.0
项目类别:
青年科学基金项目
陈卫
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓