In the present paper, we consider a class of compact orientable 3-manifolds with one boundary component, and suppose that the manifolds are @-reducible and admit complete surface systems. One of our main results says that for a compact orientable, irreducible and @-reducible 3-manifold M with one boundary component F of genus n > 0 which admits a complete surface system S′, if D is a collection of pairwise disjoint compression disks for @M, then there exists a complete surface system S for M, which is equivalent to S′ such that D is disjoint from S. We also obtain some properties of such 3-manifolds which can be embedded in S3.
在本文中,我们考虑一类具有一个边界分支的紧致可定向3 - 流形,并假设这些流形是@ - 可约的且允许完备曲面系。我们的一个主要结果表明:对于一个具有一个亏格\(n>0\)的边界分支\(F\)的紧致可定向、不可约且@ - 可约的3 - 流形\(M\),若它允许一个完备曲面系\(S′\),如果\(D\)是一组两两不相交的\(\partial M\)的压缩圆盘,那么存在一个\(M\)的完备曲面系\(S\),它与\(S′\)等价,使得\(D\)与\(S\)不相交。我们还得到了这类可嵌入\(S^3\)的3 - 流形的一些性质。
注:其中“@ - 可约”这种表述可能是特定数学领域中的专业术语,可能有更准确的中文翻译,如果有相关背景知识补充,翻译会更准确。