喵ID:HjC0Cm免责声明

Protecting Genomic Sequence Anonymity with Generalization Lattices

基本信息

DOI:
10.1055/s-0038-1634025
发表时间:
2005
影响因子:
1.7
通讯作者:
Bradley A. Malin
中科院分区:
医学4区
文献类型:
--
作者: Bradley A. Malin研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Summary Objectives: Current genomic privacy technologies assume the identity of genomic sequence data is protected if personal information, such as demographics, are obscured, removed, or encrypted. While demographic features can directly compromise an individual’s identity, recent research demonstrates such protections are insufficient because sequence data itself is susceptible to re-identification. To counteract this problem, we introduce an algorithm for anonymizing a collection of person-specific DNA sequences. Methods: The technique is termed DNA lattice an-onymization (DNALA), and is based upon the formal privacy protection schema of k-anonymity. Under this model, it is impossible to observe or learn features that distinguish one genetic sequence from k-1 other entries in a collection. To maximize information retained in protected sequences, we incorporate a concept generalization lattice to learn the distance between two residues in a single nucleotide region. The lattice provides the most similar generalized concept for two residues (e.g. adenine and guanine are both purines). Results: The method is tested and evaluated with several publicly available human population datasets ranging in size from 30 to 400 sequences. Our findings imply the anonymization schema is feasible for the protection of sequences privacy. Conclusions: The DNALA method is the first computational disclosure control technique for general DNA sequences. Given the computational nature of the method, guarantees of anonymity can be formally proven. There is room for improvement and validation, though this research provides the groundwork from which future researchers can construct genomics anonymization schemas tailored to specific data-sharing scenarios.
摘要目的:如果个人信息(例如人口统计学)被遮盖,删除或加密,则可以保护基因组隐私技术,而人口统计学特征则可以直接妥协,因为序列数据本身很容易对其进行介绍。特定的DNA序列:该技术被称为DNA晶格An-nymization(DNALA),并且基于此模型的正式隐私保护架构。单个核植物区域提供了两个保留的概念(例如,腺嘌呤和鸟嘌呤是神经的测试和评估)。一般的DNA序列,鉴于该方法的计算性质,可以正式证明匿名性的保证。
参考文献(25)
被引文献(52)

数据更新时间:{{ references.updateTime }}

Bradley A. Malin
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓