喵ID:H7cfZn免责声明

SrVARM: State Regularized Vector Autoregressive Model for Joint Learning of Hidden State Transitions and State-Dependent Inter-Variable Dependencies from Time Series Data

SrVARM:状态正则向量自回归模型,用于联合学习时间序列数据中的隐藏状态转换和状态相关的变量间依赖性

基本信息

DOI:
--
发表时间:
2021
期刊:
影响因子:
--
通讯作者:
Vasant G Honavar
中科院分区:
文献类型:
--
作者: Tsung;Yiwei Sun;Xianfeng Tang;Suhang Wang;Vasant G Honavar研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Many applications, e.g., healthcare, education, call for effective methods methods for constructing predictive models from high dimensional time series data where the relationship between variables can be complex and vary over time. In such settings, the underlying system undergoes a sequence of unobserved transitions among a finite set of hidden states. Furthermore, the relationships between the observed variables and their temporal dynamics may depend on the hidden state of the system. To further complicate matters, the hidden state sequences underlying the observed data from different individuals may not be aligned relative to a common frame of reference. Against this background, we consider the novel problem of jointly learning the state-dependent inter-variable relationships as well as the pattern of transitions between hidden states from multi-dimensional time series data. To solve this problem, we introduce the State-Regularized Vector Autoregressive Model (SrVARM) which combines a state-regularized recurrent neural network to learn the dynamics of transitions between discrete hidden states with an augmented autoregressive model which models the inter-variable dependencies in each state using a state-dependent directed acyclic graph (DAG). We propose an efficient algorithm for training SrVARM by leveraging a recently introduced reformulation of the combinatorial problem of optimizing the DAG structure with respect to a scoring function into a continuous optimization problem. We report results of extensive experiments with simulated data as well as a real-world benchmark that show that SrVARM outperforms state-of-the-art baselines in recovering the unobserved state transitions and discovering the state-dependent relationships among variables
许多应用,例如医疗保健、教育,都需要从高维时间序列数据中构建预测模型的有效方法,其中变量之间的关系可能很复杂且随时间变化。在这种情况下,基础系统在有限的一组隐藏状态之间经历一系列未被观察到的转换。此外,观测变量之间的关系及其时间动态可能取决于系统的隐藏状态。使情况更加复杂的是,来自不同个体的观测数据背后的隐藏状态序列可能相对于一个共同的参考框架未对齐。在此背景下,我们考虑从多维时间序列数据中联合学习依赖于状态的变量间关系以及隐藏状态之间的转换模式这一新颖问题。为了解决这个问题,我们引入了状态正则化向量自回归模型(SrVARM),它结合了一个状态正则化递归神经网络来学习离散隐藏状态之间的转换动态,以及一个增广自回归模型,该模型使用依赖于状态的有向无环图(DAG)对每个状态中的变量间依赖关系进行建模。我们提出了一种有效的算法来训练SrVARM,该算法利用了最近提出的一种将关于评分函数优化DAG结构的组合问题重新表述为连续优化问题的方法。我们报告了模拟数据以及一个真实世界基准的大量实验结果,这些结果表明SrVARM在恢复未观测到的状态转换以及发现变量之间依赖于状态的关系方面优于最先进的基准方法。
参考文献(13)
被引文献(0)
Methodological considerations in ambulatory skin conductance monitoring.
DOI:
10.1016/j.ijpsycho.2011.02.002
发表时间:
2011-05
期刊:
INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY
影响因子:
3
作者:
Doberenz, Sigrun;Roth, Walton T.;Wollburg, Eileen;Maslowski, Nina I.;Kim, Sunyoung
通讯作者:
Kim, Sunyoung
Learning Bayesian networks: approaches and issues
DOI:
10.1017/s0269888910000251
发表时间:
2011-06-01
期刊:
KNOWLEDGE ENGINEERING REVIEW
影响因子:
2.1
作者:
Daly, Ronan;Shen, Qiang;Aitken, Stuart
通讯作者:
Aitken, Stuart
Longitudinal Deep Kernel Gaussian Process Regression
DOI:
10.1609/aaai.v35i10.17038
发表时间:
2020-05
期刊:
ArXiv
影响因子:
0
作者:
Junjie Liang;Yanting Wu;Dongkuan Xu;Vasant G Honavar
通讯作者:
Junjie Liang;Yanting Wu;Dongkuan Xu;Vasant G Honavar
A State-Space Approach for Detecting Stress from Electrodermal Activity
检测皮电活动压力的状态空间方法
DOI:
10.1109/embc.2018.8512928
发表时间:
2018
期刊:
2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC
影响因子:
0
作者:
Wickramasuriya, Dilranjan S.;Qi, Chaoxian;Faghih, Rose T.
通讯作者:
Faghih, Rose T.
Dynamical Gaussian Process Latent Variable Model for Representation Learning from Longitudinal Data
DOI:
10.1145/3412815.3416894
发表时间:
2020-10
期刊:
Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference
影响因子:
0
作者:
Thanh Le;Vasant G Honavar
通讯作者:
Thanh Le;Vasant G Honavar

数据更新时间:{{ references.updateTime }}

Vasant G Honavar
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓