喵ID:Gb7PrR免责声明

Structure-based identification of catalytic residues.

基本信息

DOI:
10.1002/prot.23020
发表时间:
2011-06
影响因子:
2.9
通讯作者:
Keasar, Chen
中科院分区:
生物学4区
文献类型:
Journal Article
作者: Yahalom, Ran;Reshef, Dan;Wiener, Ayana;Frankel, Sagiv;Kalisman, Nir;Lerner, Boaz;Keasar, Chen研究方向: Biochemistry & Molecular Biology;BiophysicsMeSH主题词: --
来源链接:pubmed详情页地址

文献摘要

The identification of catalytic residues is an essential step in functional characterization of enzymes. We present a purely structural approach to this problem, which is motivated by the difficulty of evolution-based methods to annotate structural genomics targets that have few or no homologs in the databases. Our approach combines a state-of-the-art support vector machine (SVM) classifier with novel structural features that augment structural clues by spatial averaging and Z-scoring. Special attention is paid to the class imbalance problem that stems from the overwhelming number of non-catalytic residues in enzymes compared to catalytic residues. This problem is tackled by: 1) optimizing the classifier to maximize a performance criterion that considers both type I and type II errors in the classification of catalytic and non-catalytic residues; 2) under-sampling non-catalytic residues before SVM training; and 3) during SVM training, penalizing errors in learning catalytic residues more than errors in learning non-catalytic residues. Tested on four enzyme datasets – one specifically designed by us to mimic the structural genomics scenario and three previously-evaluated datasets – our structure-based classifier is never inferior to similar structure-based classifiers and comparable to classifiers that use both structural and evolutionary features. In addition to evaluation of the performance of catalytic residue identification, we also present detailed case studies on three proteins. This analysis suggests that many false positive predictions may correspond to binding sites and other functional residues. A web server that implements the method, our own-designed database, and the source code of the programs are publicly available at http://www.cs.bgu.ac.il/~meshi/functionPrediction.
催化残基的鉴定是酶功能特性描述的关键步骤。我们针对该问题提出了一种纯结构方法,其动机是基于进化的方法难以对数据库中鲜有或没有同源物的结构基因组学目标进行注释。我们的方法将一种最先进的支持向量机(SVM)分类器与新的结构特征相结合,这些特征通过空间平均和Z - 评分增强了结构线索。我们特别关注类别不平衡问题,该问题源于酶中与催化残基相比数量极多的非催化残基。这个问题通过以下方式解决:1)优化分类器以最大化一个性能标准,该标准在催化残基和非催化残基的分类中同时考虑I型和II型错误;2)在SVM训练前对非催化残基进行欠采样;3)在SVM训练期间,对学习催化残基时的错误惩罚比对学习非催化残基时的错误惩罚更重。在四个酶数据集上进行测试——一个由我们专门设计以模拟结构基因组学情形的数据集以及三个先前评估过的数据集——我们基于结构的分类器绝不劣于类似的基于结构的分类器,并且与使用结构和进化特征的分类器相当。除了对催化残基鉴定性能的评估,我们还对三种蛋白质进行了详细的案例研究。该分析表明,许多假阳性预测可能对应于结合位点和其他功能性残基。一个实现该方法的网络服务器、我们自己设计的数据库以及程序的源代码可在http://www.cs.bgu.ac.il/~meshi/functionPrediction公开获取。
参考文献(53)
被引文献(7)
Looking at enzymes from the inside out: The proximity of catalytic residues to the molecular centroid can be used for detection of active sites and enzyme-ligand interfaces
DOI:
10.1016/j.jmb.2005.06.047
发表时间:
2005-08-12
期刊:
JOURNAL OF MOLECULAR BIOLOGY
影响因子:
5.6
作者:
Ben-Shimon, A;Eisenstein, M
通讯作者:
Eisenstein, M
The nature of statistical learning theory~.
DOI:
10.1109/tnn.1997.641482
发表时间:
1997-01-01
期刊:
IEEE transactions on neural networks
影响因子:
0
作者:
Cherkassky, V
通讯作者:
Cherkassky, V
Localizing frustration in native proteins and protein assemblies
DOI:
10.1073/pnas.0709915104
发表时间:
2007-12-11
期刊:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
影响因子:
11.1
作者:
Ferreiro, Diego U.;Hegler, Joseph A.;Wolynes, Peter G.
通讯作者:
Wolynes, Peter G.
Support vector machine-based image classification for genetic syndrome diagnosis
DOI:
10.1016/j.patrec.2004.09.048
发表时间:
2005-06-01
期刊:
PATTERN RECOGNITION LETTERS
影响因子:
5.1
作者:
David, A;Lerner, B
通讯作者:
Lerner, B
Analysis of catalytic residues in enzyme active sites
DOI:
10.1016/s0022-2836(02)01036-7
发表时间:
2002-11-15
期刊:
JOURNAL OF MOLECULAR BIOLOGY
影响因子:
5.6
作者:
Bartlett, GJ;Porter, CT;Thornton, JM
通讯作者:
Thornton, JM

数据更新时间:{{ references.updateTime }}

关联基金

Alignments and Improved Refinements for High-Accuracy Protein Structure Modeling
批准号:
7664456
批准年份:
2007
资助金额:
25.08
项目类别:
Keasar, Chen
通讯地址:
Ben Gurion Univ Negev, Dept Ind Engn & Management, IL-84105 Beer Sheva, Israel
所属机构:
Ben Gurion Univ NegevnBen Gurion UniversitynBen-Gurion University of the Negev Faculty of Engineering SciencesnBen-Gurion University of the Negev Department of Industrial Engineering and Management
电子邮件地址:
--
通讯地址历史:
Ben Gurion Univ Negev, Dept Life Sci, IL-84105 Beer Sheva, Israel
所属机构
Ben Gurion Univ Negev
Ben Gurion University
Ben-Gurion University of the Negev Faculty of Natural Sciences
Ben-Gurion University of the Negev Department of Life Sciences
Ben Gurion Univ Negev, Dept Comp Sci, IL-84105 Beer Sheva, Israel
所属机构
Ben Gurion Univ Negev
Ben Gurion University
Ben-Gurion University of the Negev Faculty of Natural Sciences
Ben-Gurion University of the Negev Department of Computer Science
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓