喵ID:GDY8DS免责声明

Quantum face recognition protocol with ghost imaging.

基本信息

DOI:
10.1038/s41598-022-25280-5
发表时间:
2023-02-10
影响因子:
4.6
通讯作者:
Karimi, Ebrahim
中科院分区:
综合性期刊3区
文献类型:
Journal Article
作者: Salari, Vahid;Paneru, Dilip;Saglamyurek, Erhan;Ghadimi, Milad;Abdar, Moloud;Rezaee, Mohammadreza;Aslani, Mehdi;Barzanjeh, Shabir;Karimi, Ebrahim研究方向: Science & Technology - Other TopicsMeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Face recognition is one of the most ubiquitous examples of pattern recognition in machine learning, with numerous applications in security, access control, and law enforcement, among many others. Pattern recognition with classical algorithms requires significant computational resources, especially when dealing with high-resolution images in an extensive database. Quantum algorithms have been shown to improve the efficiency and speed of many computational tasks, and as such, they could also potentially improve the complexity of the face recognition process. Here, we propose a quantum machine learning algorithm for pattern recognition based on quantum principal component analysis, and quantum independent component analysis. A novel quantum algorithm for finding dissimilarity in the faces based on the computation of trace and determinant of a matrix (image) is also proposed. The overall complexity of our pattern recognition algorithm is —N is the image dimension. As an input to these pattern recognition algorithms, we consider experimental images obtained from quantum imaging techniques with correlated photons, e.g. “interaction-free” imaging or “ghost” imaging. Interfacing these imaging techniques with our quantum pattern recognition processor provides input images that possess a better signal-to-noise ratio, lower exposures, and higher resolution, thus speeding up the machine learning process further. Our fully quantum pattern recognition system with quantum algorithm and quantum inputs promises a much-improved image acquisition and identification system with potential applications extending beyond face recognition, e.g., in medical imaging for diagnosing sensitive tissues or biology for protein identification.
人脸识别是机器学习中模式识别最普遍的例子之一,在安全、访问控制和执法等众多领域都有大量应用。使用经典算法进行模式识别需要大量的计算资源,尤其是在处理大型数据库中的高分辨率图像时。量子算法已被证明可以提高许多计算任务的效率和速度,因此,它们也有可能改善人脸识别过程的复杂性。在此,我们提出一种基于量子主成分分析和量子独立成分分析的量子机器学习模式识别算法。还提出了一种基于矩阵(图像)的迹和行列式计算来找出人脸差异的新型量子算法。我们的模式识别算法的总体复杂度为——N是图像维度。作为这些模式识别算法的输入,我们考虑从具有相关光子的量子成像技术(例如“无相互作用”成像或“幽灵”成像)获得的实验图像。将这些成像技术与我们的量子模式识别处理器相结合,可提供具有更好信噪比、更低曝光量和更高分辨率的输入图像,从而进一步加快机器学习过程。我们具有量子算法和量子输入的全量子模式识别系统有望成为一种大幅改进的图像采集和识别系统,其潜在应用不仅限于人脸识别,例如在用于诊断敏感组织的医学成像或用于蛋白质识别的生物学中。
参考文献(52)
被引文献(3)
Role of meteorological factors in the transmission of SARS-CoV-2 in the United States.
DOI:
10.1038/s41467-021-23866-7
发表时间:
2021-06-14
期刊:
Nature communications
影响因子:
16.6
作者:
Ma Y;Pei S;Shaman J;Dubrow R;Chen K
通讯作者:
Chen K
Quantum Algorithm for Linear Systems of Equations
DOI:
10.1103/physrevlett.103.150502
发表时间:
2009-10-09
期刊:
PHYSICAL REVIEW LETTERS
影响因子:
8.6
作者:
Harrow, Aram W.;Hassidim, Avinatan;Lloyd, Seth
通讯作者:
Lloyd, Seth
Molecular spins for quantum computation
DOI:
10.1038/s41557-019-0232-y
发表时间:
2019-04-01
期刊:
NATURE CHEMISTRY
影响因子:
21.8
作者:
Gaita-Arino, A.;Luis, F.;Coronado, E.
通讯作者:
Coronado, E.
Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer
DOI:
10.1038/nature01336
发表时间:
2003-01-02
期刊:
NATURE
影响因子:
64.8
作者:
Gulde, S;Riebe, M;Blatt, R
通讯作者:
Blatt, R
Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency
DOI:
10.1103/physrevlett.120.183602
发表时间:
2018-05-04
期刊:
PHYSICAL REVIEW LETTERS
影响因子:
8.6
作者:
Hsiao, Ya-Fen;Tsai, Pin-Ju;Chen, Ying-Cheng
通讯作者:
Chen, Ying-Cheng

数据更新时间:{{ references.updateTime }}

Karimi, Ebrahim
通讯地址:
Natl Res Council Canada, 100 Sussex Dr, Ottawa, ON K1A 0R6, Canada
所属机构:
Natl Res Council CanadanNational Research Council Canada
电子邮件地址:
--
通讯地址历史:
Univ Calgary, Inst Quantum Sci & Technol, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada
所属机构
Univ Calgary
University of Calgary
BCAM Basque Ctr Appl Math, Alameda Mazarredo 14, Bilbao 48009, Spain
所属机构
BCAM Basque Ctr Appl Math
Basque Center for Applied Mathematics (BCAM)
Univ Ottawa, Nexus Quantum Technol, 25 Templeton St, Ottawa, ON K1N 6N5, Canada
所属机构
Univ Ottawa
University of Ottawa
Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada
所属机构
Univ Alberta
University of Alberta
University of Alberta Faculty of Science
University of Alberta Department of Physics
Isfahan Univ Technol, Dept Phys, Esfahan 8415683111, Iran
所属机构
Isfahan Univ Technol
Isfahan University of Technology
Deakin Univ, Inst Intelligent Syst Res & Innovat IISRI, Geelong, Australia
所属机构
Deakin Univ
Deakin University
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓