喵ID:Fo3q9n免责声明

STEP: A Spatio-Temporal Fine-Granular User Traffic Prediction System for Cellular Networks

基本信息

DOI:
10.1109/tmc.2020.3001225
发表时间:
2021-12-01
影响因子:
7.9
通讯作者:
Li, Pan
中科院分区:
计算机科学2区
文献类型:
Article
作者: Yu, Lixing;Li, Ming;Li, Pan研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

While traffic modeling and prediction are at the heart of providing high-quality telecommunication services in cellular networks and attract much attention, they have been approved as an extremely challenging task. Due to the diverse network demand of Internet-based apps, the cellular traffic from an individual user can have a wide dynamic range. Most existing methods, on the other hand, model traffic patterns as probabilistic distributions or stochastic processes and impose stringent assumptions over these models. Such assumptions may be beneficial at providing closed-form formula in evaluating prediction performances, but fall short for practice use. In this paper we propose STEP, a spatio-temporal fine-granular user traffic prediction mechanism for cellular networks. A deep graph convolution network, called GCGRN, is constructed. It is a novel combination of the graph convolution network (GCN) and gated recurrent units (GRU), which exploits graph neural network to learn an efficient spatio-temporal model from a user's massive dataset for traffic prediction. The prototype of STEP has been implemented. Extensive experimental results demonstrate that our model outperforms the state-of-the-art time-series based approaches. Besides, STEP merely incurs mild energy consumption, communication overhead and system resource occupancy to mobile devices. Moreover, NS-3 based simulations validate the efficacy of STEP in reducing session dropping ratio in cellular networks.
尽管交通建模和预测是在蜂窝网络中提供高质量的电信服务的核心,并引起了很多关注,但它们已被批准为极具挑战性的任务。由于基于Internet的应用程序的网络需求多样化,个人用户的蜂窝流量可能具有广泛的动态范围。另一方面,大多数现有方法将流量模式建模为概率分布或随机过程,并对这些模型施加了严格的假设。这种假设可能在评估预测性能时提供封闭式公式,但用于实践使用。在本文中,我们提出了步骤,这是一个时空的细粒状用户流量预测机制。构建了一个称为GCGRN的深图卷积网络。它是图形卷积网络(GCN)和门控复发单元(GRU)的新型组合,该单元(GRU)利用图形神经网络从用户的大量数据集中学习有效的时空模型来学习流量预测。步骤的原型已实现。广泛的实验结果表明,我们的模型表现优于基于时间序列的方法。此外,步骤仅会引起轻度的能耗,沟通开销和系统资源占用到移动设备。此外,基于NS-3的仿真验证了步骤在降低细胞网络中降低比率下降比的功效。
参考文献(65)
被引文献(0)

数据更新时间:{{ references.updateTime }}

Li, Pan
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓