喵ID:FeKluw免责声明

Protein-protein interaction prediction with deep learning: A comprehensive review.

基本信息

DOI:
10.1016/j.csbj.2022.08.070
发表时间:
2022
影响因子:
6
通讯作者:
Spinello, Davide
中科院分区:
生物学2区
文献类型:
Journal Article;Review
作者: Soleymani, Farzan;Paquet, Eric;Viktor, Herna;Michalowski, Wojtek;Spinello, Davide研究方向: Biochemistry & Molecular Biology;Biotechnology & Applied MicrobiologyMeSH主题词: --
来源链接:pubmed详情页地址

文献摘要

Most proteins perform their biological function by interacting with themselves or other molecules. Thus, one may obtain biological insights into protein functions, disease prevalence, and therapy development by identifying protein–protein interactions (PPI). However, finding the interacting and non-interacting protein pairs through experimental approaches is labour-intensive and time-consuming, owing to the variety of proteins. Hence, protein–protein interaction and protein–ligand binding problems have drawn attention in the fields of bioinformatics and computer-aided drug discovery. Deep learning methods paved the way for scientists to predict the 3-D structure of proteins from genomes, predict the functions and attributes of a protein, and modify and design new proteins to provide desired functions. This review focuses on recent deep learning methods applied to problems including predicting protein functions, protein–protein interaction and their sites, protein–ligand binding, and protein design.
大多数蛋白质通过自身相互作用或与其他分子相互作用来执行其生物学功能。因此,通过识别蛋白质 - 蛋白质相互作用(PPI),人们可以获得有关蛋白质功能、疾病流行情况和治疗开发的生物学见解。然而,由于蛋白质的多样性,通过实验方法寻找相互作用和非相互作用的蛋白质对是劳动密集型且耗时的。因此,蛋白质 - 蛋白质相互作用和蛋白质 - 配体结合问题在生物信息学和计算机辅助药物发现领域引起了关注。深度学习方法为科学家从基因组预测蛋白质的三维结构、预测蛋白质的功能和属性以及修改和设计具有所需功能的新蛋白质铺平了道路。本综述重点关注应用于预测蛋白质功能、蛋白质 - 蛋白质相互作用及其位点、蛋白质 - 配体结合和蛋白质设计等问题的近期深度学习方法。
参考文献(373)
被引文献(42)
Sequence-Based Prediction of Plant Protein-Protein Interactions by Combining Discrete Sine Transformation With Rotation Forest.
DOI:
10.1177/11769343211050067
发表时间:
2021
期刊:
Evolutionary bioinformatics online
影响因子:
0
作者:
Pan J;Li LP;Yu CQ;You ZH;Guan YJ;Ren ZH
通讯作者:
Ren ZH
Accurate de novo design of hyperstable constrained peptides.
DOI:
10.1038/nature19791
发表时间:
2016-10-20
期刊:
NATURE
影响因子:
64.8
作者:
Bhardwaj, Gaurav;Mulligan, Vikram Khipple;Bahl, Christopher D.;Gilmore, Jason M.;Harvey, Peta J.;Cheneval, Olivier;Buchko, Garry W.;Pulavarti, Surya V. S. R. K.;Kaas, Quentin;Eletsky, Alexander;Huang, Po-Ssu;Johnsen, William A.;Greisen, Per Jr;Rocklin, Gabriel J.;Song, Yifan;Linsky, Thomas W.;Watkins, Andrew;Rettie, Stephen A.;Xu, Xianzhong;Carter, Lauren P.;Bonneau, Richard;Olson, James M.;Coutsias, Evangelos;Correnti, Colin E.;Szyperski, Thomas;Craik, David J.;Baker, David
通讯作者:
Baker, David
Learning generative models for protein fold families
DOI:
10.1002/prot.22934
发表时间:
2011-04-01
期刊:
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS
影响因子:
2.9
作者:
Balakrishnan, Sivaraman;Kamisetty, Hetunandan;Langmead, Christopher James
通讯作者:
Langmead, Christopher James
UniProt: the Universal Protein knowledgebase
DOI:
10.1093/nar/gkh131
发表时间:
2004-01-01
期刊:
NUCLEIC ACIDS RESEARCH
影响因子:
14.9
作者:
Apweiler, R;Bairoch, A;Yeh, LSL
通讯作者:
Yeh, LSL
Targeting protein-protein interactions, a wide open field for drug design
DOI:
10.1016/j.crci.2015.12.004
发表时间:
2016-01-01
期刊:
COMPTES RENDUS CHIMIE
影响因子:
1.6
作者:
Bakail, May;Ochsenbein, Francoise
通讯作者:
Ochsenbein, Francoise

数据更新时间:{{ references.updateTime }}

Spinello, Davide
通讯地址:
Univ Ottawa, Telfer Sch Management, Ottawa, ON K1N 6N5, Canada
所属机构:
Univ OttawanUniversity of OttawanUniversity of Ottawa Telfer School of Management
电子邮件地址:
wojtek@telfer.uottawa.ca
通讯地址历史:
Univ Ottawa, Dept Mech Engn, Ottawa, ON, Canada
所属机构
Univ Ottawa
University of Ottawa
University of Ottawa Faculty of Engineering
University of Ottawa Department of Mechanical Engineering
CNR, 1200 Montreal Rd, Ottawa, ON K1A 0R6, Canada
所属机构
CNR
National Research Council Canada
Univ Ottawa, Sch Elect Engn & Comp Sci, Ottawa, ON, Canada
所属机构
Univ Ottawa
University of Ottawa
University of Ottawa Faculty of Engineering
University of Ottawa School of Electrical Engineering and Computer Science
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓