喵ID:FaRN6C免责声明

Two-Dimensional Direction-of-Arrival and Polarization Parameter Estimation Using Parallel Co-Prime Polarization Sensitive Array

使用并行共质偏振敏感阵列的二维到达方向和偏振参数估计

基本信息

DOI:
10.1109/access.2019.2957546
发表时间:
2020-01-01
期刊:
影响因子:
3.9
通讯作者:
Si, Weijian
中科院分区:
计算机科学3区
文献类型:
Article
作者: Hou, Changbo;Fang, Chenyu;Si, Weijian研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Target detection is critical in many mission critical sensors and sensor network (MC-SSN) applications. For target detection in complicated electromagnetic environment, DOA estimation using polarization sensitive array (PSA) has been receiving increased attentions. In this paper, we propose the parallel co-prime polarization sensitive array (PCP-PSA) which consists of the cocentered orthogonal dipole triads (CODTs) to estimate two-dimensional direction-of-arrival (2D DOA) and polarization parameters. The degrees of freedom (DOFs) have been extended due to the co-prime structure, so that the more signals can be detected and the estimation accuracy is improved. In order to reduce the computation complexity, we construct a new cross-covariance matrix based on the CODTs, which converts the two-dimensional DOA estimation into two independent one-dimensional DOA estimations. Then, the spatial smoothing-based multiple signal classification algorithm(MUSIC) and the sparse representation-based method are applied to estimate 2D DOA with only one-dimensional (1D) peak searching and 1D dictionary, respectively. Finally, the polarization parameters are estimated by using the cross-covariance matrix between components of electric field vector. Compared with previous PSA-based algorithms, the proposed algorithm based on PCP-PSA can solve the underdetermined 2D DOA and polarization parameters estimation problem and has better estimation accuracy. Theoretical analyses and simulation results verify the effectiveness of the proposed methods in terms of computational complexity and estimation accuracy.
目标检测在许多关键任务传感器和传感器网络(MC - SSN)应用中至关重要。对于复杂电磁环境中的目标检测,利用极化敏感阵列(PSA)进行波达方向(DOA)估计受到了越来越多的关注。在本文中,我们提出了平行互质极化敏感阵列(PCP - PSA),它由共心正交偶极子三元组(CODTs)组成,用于估计二维波达方向(2D DOA)和极化参数。由于互质结构,自由度(DOFs)得到了扩展,从而可以检测更多的信号,并且提高了估计精度。为了降低计算复杂度,我们基于CODTs构建了一个新的互协方差矩阵,它将二维DOA估计转化为两个独立的一维DOA估计。然后,分别应用基于空间平滑的多信号分类算法(MUSIC)和基于稀疏表示的方法,仅通过一维(1D)峰值搜索和一维字典来估计2D DOA。最后,利用电场矢量分量之间的互协方差矩阵来估计极化参数。与先前基于PSA的算法相比,基于PCP - PSA的所提算法能够解决欠定的二维DOA和极化参数估计问题,并且具有更好的估计精度。理论分析和仿真结果在计算复杂度和估计精度方面验证了所提方法的有效性。
参考文献(44)
被引文献(0)

数据更新时间:{{ references.updateTime }}

关联基金

基于高阶非网格的压缩感知框架下非网格DOA估计算法研究
批准号:
61671168
批准年份:
2016
资助金额:
58.0
项目类别:
面上项目
Si, Weijian
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓