喵ID:FTewHt免责声明

Poster: Searching for High-Performing Software Configurations with Metaheuristic Algorithms

海报:使用元启发式算法搜索高性能软件配置

基本信息

DOI:
--
发表时间:
2018
期刊:
2018 IEEE/ACM 40th International Conference on Software Engineering: Companion (ICSE-Companion)
影响因子:
--
通讯作者:
Baishakhi Ray
中科院分区:
文献类型:
--
作者: Chong Tang;K. Sullivan;Baishakhi Ray研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Modern systems often have complex configuration spaces. Research has shown that people often just use default settings. This practice leaves significant performance potential unrealized. In this work, we propose an approach that uses metaheuristic search algorithms to explore the configuration space of Hadoop for high-performing configurations. We present results of a set of experiments to show that our approach can find configurations that perform significantly better than defaults. We tested two metaheuristic search algorithms—coordinate descent and genetic algorithms—for three common MapReduce programs—Wordcount, Sort, and Terasort—for a total of six experiments. Our results suggest that metaheuristic search can find configurations cost-effectively that perform significantly better than baseline default configurations.
现代系统通常具有复杂的配置空间。执行配置。我们提出了一组实验的结果默认情况下,我们测试了两个元启发式搜索算法(坐标下降和遗传算法),用于三个常见的MAPREDUCE程序 - WordCount,Sort和Terasort,我们的结果总共进行了六个实验。明显好于基线默认配置。
参考文献(3)
被引文献(2)
Predicting performance via automated feature-interaction detection
DOI:
10.1109/icse.2012.6227196
发表时间:
2012-06
期刊:
2012 34th International Conference on Software Engineering (ICSE)
影响因子:
0
作者:
Norbert Siegmund;Sergiy S. Kolesnikov;Christian Kästner;S. Apel;D. Batory;Marko Rosenmüller;G. Saake
通讯作者:
Norbert Siegmund;Sergiy S. Kolesnikov;Christian Kästner;S. Apel;D. Batory;Marko Rosenmüller;G. Saake
Using bad learners to find good configurations
使用糟糕的学习器来找到好的配置
DOI:
10.1145/3106237.3106238
发表时间:
2017
期刊:
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering
影响因子:
0
作者:
V. Nair;T. Menzies;N. Siegmund;S. Apel
通讯作者:
S. Apel

数据更新时间:{{ references.updateTime }}

Baishakhi Ray
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓