喵ID:FGWYCU免责声明

What Do Global Climate Models Tell Us about Future Arctic Sea Ice Coverage Changes?

全球气候模型告诉我们有关未来北极海冰覆盖变化的哪些信息?

基本信息

DOI:
--
发表时间:
2020
期刊:
影响因子:
--
通讯作者:
Liqiang Sun
中科院分区:
文献类型:
--
作者: G. Peng;J. Matthews;Muyin Wang;R. Vose;Liqiang Sun研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

The prospect of an ice-free Arctic in our near future due to the rapid and accelerated Arctic sea ice decline has brought about the urgent need for reliable projections of the first ice-free Arctic summer year (FIASY). Together with up-to-date observations and characterizations of Arctic ice state, they are essential to business strategic planning, climate adaptation, and risk mitigation. In this study, the monthly Arctic sea ice extents from 12 global climate models are utilized to obtain projected FIASYs and their dependency on different emission scenarios, as well as to examine the nature of the ice retreat projections. The average value of model-projected FIASYs is 2054/2042, with a spread of 74/42 years for the medium/high emission scenarios, respectively. The earliest FIASY is projected to occur in year 2023, which may not be realistic, for both scenarios. The sensitivity of individual climate models to scenarios in projecting FIASYs is very model-dependent. The nature of model-projected Arctic sea ice coverage changes is shown to be primarily linear. FIASY values predicted by six commonly used statistical models that were curve-fitted with the first 30 years of climate projections (2006–2035), on other hand, show a preferred range of 2030–2040, with a distinct peak at 2034 for both scenarios, which is more comparable with those from previous studies.
由于北极海冰快速且加速减少,在不久的将来北极可能无冰,这迫切需要对首个北极夏季无冰年(FIASY)进行可靠预测。结合对北极冰情的最新观测和描述,它们对商业战略规划、气候适应和风险缓解至关重要。在这项研究中,利用12个全球气候模型的逐月北极海冰范围来获取预测的FIASY及其对不同排放情景的依赖性,并检验海冰消退预测的性质。模型预测的FIASY平均值为2054/2042年,中/高排放情景的时间跨度分别为74/42年。两种情景下,最早预测的FIASY都出现在2023年,但这可能不现实。各个气候模型在预测FIASY时对情景的敏感性因模型而异。模型预测的北极海冰覆盖变化性质主要呈线性。另一方面,用气候预测前30年(2006 - 2035年)曲线拟合的6个常用统计模型预测的FIASY值显示出2030 - 2040年的偏好范围,两种情景下在2034年都有一个明显峰值,这与先前研究更为相似。
参考文献(1)
被引文献(19)
Sensitivity Analysis of Arctic Sea Ice Extent Trends and Statistical Projections Using Satellite Data
使用卫星数据对北极海冰范围趋势和统计预测进行敏感性分析
DOI:
10.3390/rs10020230
发表时间:
2018
期刊:
Remote Sensing
影响因子:
5
作者:
Peng, Ge;Matthews, Jessica;Yu, Jason
通讯作者:
Yu, Jason

数据更新时间:{{ references.updateTime }}

Liqiang Sun
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓