喵ID:F34vbA免责声明

Solving DCOPs with Distributed Large Neighborhood Search

通过分布式大邻域搜索解决 DCOP

基本信息

DOI:
--
发表时间:
2017
期刊:
arXiv.org
影响因子:
--
通讯作者:
R. Zivan
中科院分区:
文献类型:
--
作者: Ferdinando Fioretto;A. Dovier;Enrico Pontelli;W. Yeoh;R. Zivan研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

The field of Distributed Constraint Optimization has gained momentum in recent years, thanks to its ability to address various applications related to multi-agent cooperation. Nevertheless, solving Distributed Constraint Optimization Problems (DCOPs) optimally is NP-hard. Therefore, in large-scale, complex applications, incomplete DCOP algorithms are necessary. Current incomplete DCOP algorithms suffer of one or more of the following limitations: they (a) find local minima without providing quality guarantees; (b) provide loose quality assessment; or (c) are unable to benefit from the structure of the problem, such as domain-dependent knowledge and hard constraints. Therefore, capitalizing on strategies from the centralized constraint solving community, we propose a Distributed Large Neighborhood Search (D-LNS) framework to solve DCOPs. The proposed framework (with its novel repair phase) provides guarantees on solution quality, refining upper and lower bounds during the iterative process, and can exploit domain-dependent structures. Our experimental results show that D-LNS outperforms other incomplete DCOP algorithms on both structured and unstructured problem instances.
近年来,分布式约束优化的领域已经获得了动力,这要归功于其解决与多机构合作相关的各种应用程序的能力。然而,最佳地解决分布式约束优化问题(DCOPS)是NP-HARD。因此,在大规模的复杂应用中,需要不完整的DCOP算法。当前不完整的DCOP算法遭受以下一个或多个限制:他们(a)在不提供质量保证的情况下找到当地的最小值; (b)提供质量宽松的评估;或(c)无法从问题的结构中受益,例如依赖域的知识和硬性约束。因此,利用集中式约束解决社区的策略,我们提出了一个分布式的大型邻里搜索(D-LNS)框架来解决DCOPS。提出的框架(具有新颖的修复阶段)为溶液质量提供了保证,在迭代过程中可以完善上限和下限,并可以利用域依赖性结构。我们的实验结果表明,D-LN在结构化和非结构化问题实例上都优于其他不完整的DCOP算法。
参考文献(3)
被引文献(0)
Asynchronous algorithms for approximate distributed constraint optimization with quality bounds
DOI:
10.1145/1838206.1838225
发表时间:
2010-05
期刊:
影响因子:
0
作者:
Christopher Kiekintveld;Zhengyu Yin;Atul Kumar;Milind Tambe
通讯作者:
Christopher Kiekintveld;Zhengyu Yin;Atul Kumar;Milind Tambe
Adopt: asynchronous distributed constraint optimization with quality guarantees
DOI:
10.1016/j.artint.2004.09.003
发表时间:
2005-01-01
期刊:
ARTIFICIAL INTELLIGENCE
影响因子:
14.4
作者:
Modi, PJ;Shen, WM;Yokoo, M
通讯作者:
Yokoo, M

数据更新时间:{{ references.updateTime }}

R. Zivan
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓