喵ID:EsDwJ5免责声明

Simultaneous-Fault Diagnosis of Satellite Power System Based on Fuzzy Neighborhood ζ-Decision-Theoretic Rough Set

基于模糊邻域γ决策理论粗糙集的卫星电力系统同步故障诊断

基本信息

DOI:
10.3390/math10193414
发表时间:
2022-09
期刊:
影响因子:
2.4
通讯作者:
Mingliang Suo
中科院分区:
数学3区
文献类型:
--
作者: Laifa Tao;Chao Wang;Yuan Jia;Ruzhi Zhou;Tong Zhang;Yiling Chen;Chen Lu;Mingliang Suo研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Due to the increasing complexity of the entire satellite system and the deteriorating orbital environment, multiple independent single faults may occur simultaneously in the satellite power system. However, two stumbling blocks hinder the effective diagnosis of simultaneous-fault, namely, the difficulty of obtaining the simultaneous-fault data and the extremely complicated mapping of the simultaneous-fault modes to the sensor data. To tackle the challenges, a fault diagnosis strategy based on a novel rough set model is proposed. Specifically, a novel rough set model named FNζDTRS by introducing a concise loss function matrix and fuzzy neighborhood relationship is proposed to accurately mine and characterize the relationship between fault and data. Furthermore, an attribute rule-based fault matching strategy is designed without using simultaneous-fault data as training samples. The numerical experiments demonstrate the effectiveness of the FNζDTRS model, and the diagnosis experiments performed on a satellite power system illustrate the superiority of the proposed approach.
由于整个卫星系统日益复杂以及轨道环境不断恶化,卫星电力系统中可能会同时出现多个独立的单一故障。然而,有两个障碍阻碍了对并发故障的有效诊断,即获取并发故障数据困难以及并发故障模式到传感器数据的映射极其复杂。为了应对这些挑战,提出了一种基于新型粗糙集模型的故障诊断策略。具体而言,通过引入简洁的损失函数矩阵和模糊邻域关系,提出了一种名为FNζDTRS的新型粗糙集模型,以准确挖掘和表征故障与数据之间的关系。此外,设计了一种基于属性规则的故障匹配策略,该策略不使用并发故障数据作为训练样本。数值实验证明了FNζDTRS模型的有效性,在卫星电力系统上进行的诊断实验表明了所提方法的优越性。
参考文献(35)
被引文献(3)
Intelligent simultaneous fault diagnosis for solid oxide fuel cell system based on deep learning
DOI:
10.1016/j.apenergy.2018.10.113
发表时间:
2019
期刊:
Applied Energy
影响因子:
11.2
作者:
Zehan Zhang;Shuanghong Li;Yawen Xiao;Yupu Yang
通讯作者:
Zehan Zhang;Shuanghong Li;Yawen Xiao;Yupu Yang
Data-driven simultaneous fault diagnosis for solid oxide fuel cell system using multi-label pattern identification
DOI:
10.1016/j.jpowsour.2018.01.015
发表时间:
2018-02-28
期刊:
JOURNAL OF POWER SOURCES
影响因子:
9.2
作者:
Li, Shuanghong;Cao, Hongliang;Yang, Yupu
通讯作者:
Yang, Yupu
A rough set-based bio-inspired fault diagnosis method for electrical substations
一种基于粗糙集的仿生变电站故障诊断方法
DOI:
10.1016/j.ijepes.2020.105961
发表时间:
2020-07-01
期刊:
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS
影响因子:
5.2
作者:
Wang, Tao;Liu, Wei;Terzija, Vladimir
通讯作者:
Terzija, Vladimir
Neighborhood based decision-theoretic rough set models
基于邻域的决策理论粗糙集模型
DOI:
10.1016/j.ijar.2015.11.005
发表时间:
2016-02-01
期刊:
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING
影响因子:
3.9
作者:
Li, Weiwei;Huang, Zhiqiu;Cai, Xinye
通讯作者:
Cai, Xinye
Adaptive weighted generalized multi-granulation interval-valued decision-theoretic rough sets
DOI:
10.1016/j.knosys.2019.06.012
发表时间:
2020-01
期刊:
Knowl. Based Syst.
影响因子:
0
作者:
Yanting Guo;Eric C. C. Tsang-Eric-C.-C.-Tsang-1830488;Weihua Xu;De-gang Chen
通讯作者:
Yanting Guo;Eric C. C. Tsang-Eric-C.-C.-Tsang-1830488;Weihua Xu;De-gang Chen

数据更新时间:{{ references.updateTime }}

关联基金

基于三支决策和强化学习的深空探测器非预期故障自主诊断与系统重构研究
批准号:
61903015
批准年份:
2019
资助金额:
23.0
项目类别:
青年科学基金项目
Mingliang Suo
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓