喵ID:EldQrS免责声明

Construction of the Transreal Numbers and Algebraic Transfields

跨实数和代数跨域的构造

基本信息

DOI:
--
发表时间:
2015
期刊:
影响因子:
--
通讯作者:
James Anderson
中科院分区:
文献类型:
--
作者: Tiago Reis;Walter Gomide;James Anderson研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

The transreal numbers, introduced by James Anderson, are an extension of the real numbers. The four arithmetical operations of addition, subtraction, multiplication and division are closed on the set of transreal numbers. Transreal arithmetic has engendered controversy because it allows division by zero and is proposed as a replacement for real arithmetic. Anderson introduced the transreals intuitively and axiomatically. In the history of mathematics, constructive proofs have ended controversies. We construct the transreal numbers and transreal arithmetic from the very well accepted real numbers and real arithmetic. This construction proves consistency. We then extend the very well accepted algebraic structure of a field to a transfield. We show that, just as the rationals are the smallest, ordered field and reals are the unique, ordered, complete field, so, under suitable conditions, transrationals are the smallest, ordered transfield and transreals are the smallest, ordered, complete transfield. Thus we both prove consistency and demonstrate the wider applicability of the transreals. We hope this does enough to end controversy about the correctness of the transreals, leaving an assessment of their usefulness to future experience.
詹姆斯·安德森(James Anderson)提出的跨界数字是实数的扩展。加法,减法,乘法和除法的四个算术操作在经过超大数字的集合上关闭。 Transreal算术引起了争议,因为它允许零划分,并被提议作为实际算术的替代。安德森(Anderson)以直觉和公理的形式引入了特写。在数学历史上,建设性证据结束了争议。我们从非常公认的实际数字和实际算术中构造了经过的经过实现数量和经过超实算术。这种构造证明是一致性的。然后,我们将磁场的非常公认的代数结构扩展到了跨场。我们表明,正如理性是最小的,有序的字段,而实数是独特的,有序的,完整的字段,因此,在适当的条件下,跨元素是最小的,有序的变形底场,而经过的特性是最小的,有序的,完整的,完整的transfield。因此,我们都证明了一致性,并证明了经过特性的更广泛的适用性。我们希望这足以结束有关特雷尔斯的正确性的争议,并评估其对未来经验的有用性。
参考文献(0)
被引文献(33)

数据更新时间:{{ references.updateTime }}

James Anderson
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓