喵ID:EAo1Vf免责声明

Recovery of continuous 3D refractive index maps from discrete intensity-only measurements using neural fields

基本信息

DOI:
10.1038/s42256-022-00530-3
发表时间:
2022-09-16
影响因子:
23.8
通讯作者:
Kamilov, Ulugbek S.
中科院分区:
计算机科学1区
文献类型:
Article
作者: Liu, Renhao;Sun, Yu;Kamilov, Ulugbek S.研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Intensity diffraction tomography (IDT) refers to a class of optical microscopy techniques for imaging the three-dimensional refractive index (RI) distribution of a sample from a set of two-dimensional intensity-only measurements. The reconstruction of artefact-free RI maps is a fundamental challenge in IDT due to the loss of phase information and the missing-cone problem. Neural fields has recently emerged as a new deep learning approach for learning continuous representations of physical fields. The technique uses a coordinate-based neural network to represent the field by mapping the spatial coordinates to the corresponding physical quantities, in our case the complex-valued refractive index values. We present Deep Continuous Artefact-free RI Field (DeCAF) as a neural-fields-based IDT method that can learn a high-quality continuous representation of a RI volume from its intensity-only and limited-angle measurements. The representation in DeCAF is learned directly from the measurements of the test sample by using the IDT forward model without any ground-truth RI maps. We qualitatively and quantitatively evaluate DeCAF on the simulated and experimental biological samples. Our results show that DeCAF can generate high-contrast and artefact-free RI maps and lead to an up to 2.1-fold reduction in the mean squared error over existing methods.Producing high-quality 3D refractive index maps from 2D intensity-only measurements is a long-standing objective in computational microscopy, with many applications involving the visualization of cellular and subcellular structures. A new method can reconstruct high-contrast and artefact-free images by employing the neural fields technique, which can learn a continuous 3D representation using a neural network that maps spatial coordinates to the refractive index values.
强度衍射层析成像(IDT)是一类光学显微技术,用于从一组仅含强度的二维测量值中对样本的三维折射率(RI)分布进行成像。由于相位信息的丢失和缺失锥问题,无伪影RI图的重建是IDT中的一个基本挑战。神经场最近作为一种学习物理场连续表示的新深度学习方法而出现。该技术使用基于坐标的神经网络,通过将空间坐标映射到相应的物理量(在我们的情况下是复值折射率值)来表示场。我们提出深度连续无伪影RI场(DeCAF)作为一种基于神经场的IDT方法,它能够从仅含强度和有限角度的测量值中学习到高质量的RI体积连续表示。DeCAF中的表示是通过使用IDT正演模型直接从测试样本的测量值中学习得到的,无需任何真实的RI图。我们对模拟和实验生物样本上的DeCAF进行了定性和定量评估。我们的结果表明,DeCAF能够生成高对比度且无伪影的RI图,并且与现有方法相比,均方误差最多可降低2.1倍。从仅含强度的二维测量值中生成高质量的三维折射率图是计算显微术中一个长期的目标,在涉及细胞和亚细胞结构可视化的许多应用中都有需求。一种新方法可以通过采用神经场技术重建高对比度且无伪影的图像,该技术能够使用将空间坐标映射到折射率值的神经网络学习连续的三维表示。
参考文献(64)
被引文献(0)

数据更新时间:{{ references.updateTime }}

Kamilov, Ulugbek S.
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓