喵ID:DKZCbZ免责声明

Machine learning classification of plant genotypes grown under different light conditions through the integration of multi-scale time-series data.

基本信息

DOI:
10.1016/j.csbj.2023.05.005
发表时间:
2023
影响因子:
6
通讯作者:
Lin, Guohui
中科院分区:
生物学2区
文献类型:
Journal Article
作者: Sakeef, Nazmus;Scandola, Sabine;Kennedy, Curtis;Lummer, Christina;Chang, Jiameng;Uhrig, R. Glen;Lin, Guohui研究方向: Biochemistry & Molecular Biology;Biotechnology & Applied MicrobiologyMeSH主题词: --
来源链接:pubmed详情页地址

文献摘要

In order to mitigate the effects of a changing climate, agriculture requires more effective evaluation, selection, and production of crop cultivars in order to accelerate genotype-to-phenotype connections and the selection of beneficial traits. Critically, plant growth and development are highly dependent on sunlight, with light energy providing plants with the energy required to photosynthesize as well as a means to directly intersect with the environment in order to develop. In plant analyses, machine learning and deep learning techniques have a proven ability to learn plant growth patterns, including detection of disease, plant stress, and growth using a variety of image data. To date, however, studies have not assessed machine learning and deep learning algorithms for their ability to differentiate a large cohort of genotypes grown under several growth conditions using time-series data automatically acquired across multiple scales (daily and developmentally). Here, we extensively evaluate a wide range of machine learning and deep learning algorithms for their ability to differentiate 17 well-characterized photoreceptor deficient genotypes differing in their light detection capabilities grown under several different light conditions. Using algorithm performance measurements of precision, recall, F1-Score, and accuracy, we find that Suport Vector Machine (SVM) maintains the greatest classification accuracy, while a combined ConvLSTM2D deep learning model produces the best genotype classification results across the different growth conditions. Our successful integration of time-series growth data across multiple scales, genotypes and growth conditions sets a new foundational baseline from which more complex plant science traits can be assessed for genotype-to-phenotype connections.
为了减轻气候变化的影响,农业需要更有效地评估、选择和培育作物品种,以加速基因型与表型的关联以及有益性状的筛选。关键的是,植物的生长和发育高度依赖阳光,光能为植物提供光合作用所需的能量,也是植物与环境相互作用以实现生长发育的一种途径。在植物分析中,机器学习和深度学习技术已被证明有能力学习植物生长模式,包括利用各种图像数据检测疾病、植物胁迫和生长情况。然而,到目前为止,研究尚未评估机器学习和深度学习算法利用在多个尺度(每日和发育阶段)自动获取的时间序列数据区分在多种生长条件下生长的大量基因型的能力。在此,我们广泛评估了多种机器学习和深度学习算法区分17种特征明确的光受体缺陷基因型的能力,这些基因型在不同光照条件下生长,其光检测能力各异。通过精确率、召回率、F1值和准确率等算法性能指标的测量,我们发现支持向量机(SVM)保持了最高的分类准确率,而组合的ConvLSTM2D深度学习模型在不同生长条件下产生了最佳的基因型分类结果。我们成功整合了多个尺度、基因型和生长条件的时间序列生长数据,为评估更复杂的植物科学性状的基因型 - 表型关联奠定了新的基础基准。
参考文献(87)
被引文献(5)
Dissecting the Phenotypic Components of Crop Plant Growth and Drought Responses Based on High-Throughput Image Analysis
DOI:
10.1105/tpc.114.129601
发表时间:
2014-12-01
期刊:
PLANT CELL
影响因子:
11.6
作者:
Chen, Dijun;Neumann, Kerstin;Klukas, Christian
通讯作者:
Klukas, Christian
Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery
DOI:
10.1016/j.rse.2008.02.011
发表时间:
2008-06-16
期刊:
REMOTE SENSING OF ENVIRONMENT
影响因子:
13.5
作者:
Chan, Jonathan Cheung-Wai;Paelinckx, Desire
通讯作者:
Paelinckx, Desire
Automated Plant Disease Analysis (APDA): Performance Comparison of Machine Learning Techniques
DOI:
10.1109/fit.2013.19
发表时间:
2013-01-01
期刊:
2013 11TH INTERNATIONAL CONFERENCE ON FRONTIERS OF INFORMATION TECHNOLOGY (FIT)
影响因子:
0
作者:
Akhtar, Asma;Khanum, Aasia;Shaukat, Arslan
通讯作者:
Shaukat, Arslan
A comparison of deep networks with ReLU activation function and linear spline-type methods
DOI:
10.1016/j.neunet.2018.11.005
发表时间:
2019-02-01
期刊:
NEURAL NETWORKS
影响因子:
7.8
作者:
Eckle, Konstantin;Schmidt-Hieber, Johannes
通讯作者:
Schmidt-Hieber, Johannes
Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification.
DOI:
10.1016/j.neuroimage.2013.03.066
发表时间:
2013-09
期刊:
NEUROIMAGE
影响因子:
5.7
作者:
Gaonkar, Bilwaj;Davatzikos, Christos
通讯作者:
Davatzikos, Christos

数据更新时间:{{ references.updateTime }}

Lin, Guohui
通讯地址:
Univ Alberta, Dept Comp Sci, Edmonton, AB T6G 2E8, Canada
所属机构:
Univ AlbertanUniversity of AlbertanUniversity of Alberta Faculty of SciencenUniversity of Alberta Department of Computing Science
电子邮件地址:
ruhrig@ualberta.ca
通讯地址历史:
Univ Alberta, Dept Comp Sci, Edmonton, AB, Canada
所属机构
Univ Alberta
University of Alberta
University of Alberta Faculty of Science
University of Alberta Department of Computing Science
Univ Alberta, Dept Biol Sci, Edmonton, AB, Canada
所属机构
Univ Alberta
University of Alberta
University of Alberta Faculty of Science
University of Alberta Department of Biological Sciences
Univ Alberta, Dept Biochem, Edmonton, AB, Canada
所属机构
Univ Alberta
University of Alberta
University of Alberta Faculty of Medicine & Dentistry
University of Alberta Department of Biochemistry
Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2E9, Canada
所属机构
Univ Alberta
University of Alberta
University of Alberta Faculty of Science
University of Alberta Department of Biological Sciences
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓