喵ID:DK0i53免责声明

Incorporating peak grouping information for alignment of multiple liquid chromatography-mass spectrometry datasets.

基本信息

DOI:
10.1093/bioinformatics/btv072
发表时间:
2015-06-15
期刊:
Bioinformatics (Oxford, England)
影响因子:
--
通讯作者:
Rogers S
中科院分区:
其他
文献类型:
Journal Article
作者: Wandy J;Daly R;Breitling R;Rogers S研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Motivation: The combination of liquid chromatography and mass spectrometry (LC/MS) has been widely used for large-scale comparative studies in systems biology, including proteomics, glycomics and metabolomics. In almost all experimental design, it is necessary to compare chromatograms across biological or technical replicates and across sample groups. Central to this is the peak alignment step, which is one of the most important but challenging preprocessing steps. Existing alignment tools do not take into account the structural dependencies between related peaks that coelute and are derived from the same metabolite or peptide. We propose a direct matching peak alignment method for LC/MS data that incorporates related peaks information (within each LC/MS run) and investigate its effect on alignment performance (across runs). The groupings of related peaks necessary for our method can be obtained from any peak clustering method and are built into a pair-wise peak similarity score function. The similarity score matrix produced is used by an approximation algorithm for the weighted matching problem to produce the actual alignment result. Results: We demonstrate that related peak information can improve alignment performance. The performance is evaluated on a set of benchmark datasets, where our method performs competitively compared to other popular alignment tools. Availability: The proposed alignment method has been implemented as a stand-alone application in Python, available for download at http://github.com/joewandy/peak-grouping-alignment. Contact: Simon.Rogers@glasgow.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online.
动机:液相色谱与质谱联用(LC/MS)已广泛用于系统生物学中的大规模比较研究,包括蛋白质组学、糖组学和代谢组学。在几乎所有的实验设计中,都有必要对生物学或技术重复样本以及不同样本组之间的色谱图进行比较。其中关键的是峰对齐步骤,这是最重要但也最具挑战性的预处理步骤之一。现有的对齐工具没有考虑到共流出且来自同一代谢物或肽段的相关峰之间的结构依赖性。我们提出了一种针对LC/MS数据的直接匹配峰对齐方法,该方法结合了相关峰信息(在每次LC/MS运行中),并研究了其对对齐性能(在不同次运行之间)的影响。我们的方法所需的相关峰分组可以从任何峰聚类方法中获得,并被构建到一个成对峰相似性评分函数中。由此产生的相似性评分矩阵被一个加权匹配问题的近似算法用于产生实际的对齐结果。 结果:我们证明了相关峰信息可以提高对齐性能。在一组基准数据集上对性能进行了评估,我们的方法与其他流行的对齐工具相比具有竞争力。 可用性:所提出的对齐方法已在Python中作为一个独立应用程序实现,可从http://github.com/joewandy/peak - grouping - alignment下载。 联系方式:Simon.Rogers@glasgow.ac.uk 补充信息:补充数据可在Bioinformatics在线获取。
参考文献(0)
被引文献(0)

数据更新时间:{{ references.updateTime }}

Rogers S
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓