喵ID:BYce5c免责声明

Recovering a Message from an Incomplete Set of Noisy Fragments

从一组不完整的嘈杂片段中恢复消息

基本信息

DOI:
--
发表时间:
2024
期刊:
影响因子:
--
通讯作者:
Ilan Shomorony
中科院分区:
文献类型:
--
作者: Aditya Narayan Ravi;Alireza Vahid;Ilan Shomorony研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

We consider the problem of communicating over a channel that breaks the message block into fragments of random lengths, shuffles them out of order, and deletes a random fraction of the fragments. Such a channel is motivated by applications in molecular data storage and forensics, and we refer to it as the torn-paper channel. We characterize the capacity of this channel under arbitrary fragment length distributions and deletion probabilities. Precisely, we show that the capacity is given by a closed-form expression that can be interpreted as F - A, where F is the coverage fraction ,i.e., the fraction of the input codeword that is covered by output fragments, and A is an alignment cost incurred due to the lack of ordering in the output fragments. We then consider a noisy version of the problem, where the fragments are corrupted by binary symmetric noise. We derive upper and lower bounds to the capacity, both of which can be seen as F - A expressions. These bounds match for specific choices of fragment length distributions, and they are approximately tight in cases where there are not too many short fragments.
我们考虑通过将消息块打破到随机长度的片段,将其删除并删除片段的随机分数的通道上进行通信的问题。这样的通道是由分子数据存储和取证中的应用激励的,我们将其称为折纸通道。我们在任意片段长度分布和删除概率下表征该通道的能力。确切地说,我们证明了容量是由可以解释为f -a的封闭式表达式给出的,其中f是覆盖范围的分数,即,输入密码字的分数被输出片段覆盖,而a是一个由于输出片段缺乏排序而产生的对齐成本。然后,我们考虑了该问题的嘈杂版本,其中碎片被二进制对称噪声损坏。我们将上限和下边界推导到容量,两者都可以看作是f-表达式。这些界限与碎片长度分布的特定选择相匹配,并且在没有太多短片段的情况下它们大约很紧。
参考文献(1)
被引文献(0)
Capacity of Noisy Permutation Channels
噪声排列通道的容量
DOI:
10.1109/tit.2023.3247812
发表时间:
2023
期刊:
IEEE Transactions on Information Theory
影响因子:
2.5
作者:
Tang, Jennifer;Polyanskiy, Yury
通讯作者:
Polyanskiy, Yury

数据更新时间:{{ references.updateTime }}

Ilan Shomorony
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓