喵ID:AolPx9免责声明

基于多角度融合的CHRIS数据提取湿地植被的研究

基本信息

DOI:
10.13275/j.cnki.lykxyj.2017.02.011
发表时间:
2017
期刊:
林业科学研究
影响因子:
--
通讯作者:
郝泷
中科院分区:
其他
文献类型:
--
作者: 李伟娜;韦玮;张怀清;刘华;郝泷研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Using multi-angle hyperspectral data, the spectral characteristics of typical vegetation communities in the East Dongting Lake wetland at different angles are analyzed, the best method for multi-angle information fusion is determined, and the wetland vegetation types are finely identified from the fused images. In this paper, CHRIS multi-angle hyperspectral data is used to study and calculate the best band combination and angle for narrow-band NDVI, and to evaluate the pixel-level fusion method of CHRIS 0° image and NDVI. The calculation results show that the best red band and near-infrared band for NDVI are located at 667.6 nm and 926.95 nm respectively, relative to the 24th band and 55th band of the CHRIS data. By selecting four fusion methods, namely HSV, Brovery, Gram - Schmidt and PCA, it can be known that the PCA fused image has the least loss of spectral information, richer texture details and the largest amount of information. The overall accuracy of the PCA fused image is 81.36%, which is 7.93% higher than that of the single-angle image fusion, and the Kappa coefficient is increased by 0.0976, significantly improving the omission error of Carex and the commission error of Artemisia selengensis. Therefore, the multi-angle information fusion based on NDVI is an effective way for fine vegetation identification. Multi-angle information fusion enriches the amount of information of ground objects and improves the identification accuracy of ground objects.
利用多角度高光谱数据,分析不同角度下东洞庭湖湿地典型植被群落的光谱特征,确定多角度信息融合的最佳方法,并对融合影像进行湿地植被类型精细识别。本文使用CHRIS多角度高光谱数据,研究计算窄波段NDVI的最佳波段组合和角度,评价CHRIS 0°影像与NDVI的像素级融合方法。计算结果显示:NDVI的最佳红波段和近红外波段分别位于667.6 nm和926.95nm,相对于CHRIS数据的第24波段和第55波段。选取HSV、Brovery、Gram-Schmidt和PCA四种融合方法可知:PCA融合图像的光谱信息丢失最少、纹理细节更丰富,信息量最大。PCA融合影像总体精度81. 36%,比单一角度影像融合精度提高7.93%,Kappa 系数提高,0。0976,使得苔草的漏分误差和泥蒿的错分误差得到明显改善。因此,基于NDVI的多角度信息融合是植被精细识别的一种有效途径,多角度信息融合丰富了地物的信息量,提高地物识别精度。
参考文献(0)
被引文献(0)

数据更新时间:{{ references.updateTime }}

关联基金

基于多角度高光谱遥感数据的高寒湿地植被生物量反演机理与模型研究
批准号:
31370712
批准年份:
2013
资助金额:
82.0
项目类别:
面上项目
郝泷
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓