喵ID:AjudTU免责声明

RDF Subgraph Query Based on Common Subgraph in Distributed Environment

分布式环境下基于公共子图的RDF子图查询

基本信息

DOI:
10.1155/2023/7148071
发表时间:
2023-01
影响因子:
--
通讯作者:
Ying Pan
中科院分区:
计算机科学4区
文献类型:
--
作者: Qingrong Huang;Xiaocong Lai;Qianxiang Su;Ying Pan研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

With the gradual development of the network, RDF graphs have become more and more complex as the scale of data increases; how to perform more effective query for massive RDF graphs is a hot topic of continuous research. The traditional methods of graph query and graph traversal produce great redundancy of intermediate results, and processing subgraph collection queries in stand-alone mode cannot perform efficient matching when the amount of data is extremely large. Moreover, when processing subgraph collection queries, it is necessary to iterate the query graph multiple times in the query of the common subgraph, and the execution efficiency is not high. In response to the above problems, a distributed query strategy of RDF subgraph set based on composite relation tree is proposed. Firstly, a corresponding composite relationship is established for RDF subgraph set, then the composite relation graph is clipped, and the redundant nodes and edges of the composite relation graph are deleted to obtain the composite relation tree. Finally, using the composite relation tree, a MapReduce-based RDF subgraph set query method is proposed, which can use parallel in the computing environment, the distributed query batch processing is performed on the RDF subgraph set, and the query result of the RDF subgraph set is obtained by traversing the composite relation tree. The experimental results show that the algorithm proposed in this paper can improve the query efficiency of RDF subgraph set.
随着网络的逐步发展,RDF图随着数据规模的增大变得越来越复杂;如何对大规模RDF图进行更有效的查询是一个持续研究的热点话题。传统的图查询和图遍历方法会产生大量中间结果冗余,并且在单机模式下处理子图集合查询在数据量极大时无法进行高效匹配。此外,在处理子图集合查询时,在公共子图的查询中需要对查询图进行多次迭代,执行效率不高。针对上述问题,提出了一种基于复合关系树的RDF子图集分布式查询策略。首先,为RDF子图集建立相应的复合关系,然后对复合关系图进行裁剪,删除复合关系图中的冗余节点和边以得到复合关系树。最后,利用复合关系树,提出了一种基于MapReduce的RDF子图集查询方法,该方法能够在计算环境中利用并行性,对RDF子图集进行分布式查询批处理,并通过遍历复合关系树得到RDF子图集的查询结果。实验结果表明,本文提出的算法能够提高RDF子图集的查询效率。
参考文献(20)
被引文献(0)
Efficient Subgraph Matching on Large RDF Graphs Using MapReduce
使用 MapReduce 对大型 RDF 图进行高效子图匹配
DOI:
10.1007/s41019-019-0090-z
发表时间:
2019-03
期刊:
Data Science and Engineering
影响因子:
4.2
作者:
Xin Wang;Lele Chai;Qiang Xu;Yajun Yang;Jianxin Li;Junhu Wang;Yunpeng Chai
通讯作者:
Yunpeng Chai
Architecture for distributed query processing using the RDF data in cloud environment
DOI:
10.1007/s12065-019-00315-5
发表时间:
2019-11
期刊:
Evolutionary Intelligence
影响因子:
2.6
作者:
C. R. Dharmaraj;B. Tripathy
通讯作者:
C. R. Dharmaraj;B. Tripathy
Mitigating the Time-Varying Doppler Shift in High-Mobility Wireless Communications Using Multi-Angle Centered Discrete Fractional Fourier Transform
DOI:
10.1109/uemcon53757.2021.9666526
发表时间:
2021-12
期刊:
2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)
影响因子:
0
作者:
A. Nafchi;Mona Esmaeili;A. Ghasempour;E. Hamke;Balu Santhanam;Ramiro Jordan
通讯作者:
A. Nafchi;Mona Esmaeili;A. Ghasempour;E. Hamke;Balu Santhanam;Ramiro Jordan
Multi-Query Optimization for Subgraph Isomorphism Search
DOI:
10.14778/3021924.3021929
发表时间:
2016-11
期刊:
Proc. VLDB Endow.
影响因子:
0
作者:
Xuguang Ren;Junhu Wang
通讯作者:
Xuguang Ren;Junhu Wang
RDF Multi-query Optimization Algorithm for Query Rewriting Using Common Subgraphs
DOI:
10.1145/3331453.3361278
发表时间:
2019-10
期刊:
Proceedings of the 3rd International Conference on Computer Science and Application Engineering
影响因子:
0
作者:
Manzi Wang;Haidong Fu;Fangfang Xu
通讯作者:
Manzi Wang;Haidong Fu;Fangfang Xu

数据更新时间:{{ references.updateTime }}

关联基金

基于pay-as-you-go模式的海量RDF图数据的关键词查询
批准号:
61862010
批准年份:
2018
资助金额:
40.0
项目类别:
地区科学基金项目
Ying Pan
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓