喵ID:Ae1wHh免责声明

Integration of Colloidal Quantum Dots with Photonic Structures for Optoelectronic and Optical Devices.

用于光电和光学器件的胶体量子点与光子结构的集成

基本信息

DOI:
10.1002/advs.202101560
发表时间:
2021-09
期刊:
Advanced science (Weinheim, Baden-Wurttemberg, Germany)
影响因子:
--
通讯作者:
Zhao N
中科院分区:
其他
文献类型:
Journal Article;Review
作者: Chen M;Lu L;Yu H;Li C;Zhao N研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Colloidal quantum dot (QD), a solution‐processable nanoscale optoelectronic building block with well‐controlled light absorption and emission properties, has emerged as a promising material system capable of interacting with various photonic structures. Integrated QD/photonic structures have been successfully realized in many optical and optoelectronic devices, enabling enhanced performance and/or new functionalities. In this review, the recent advances in this research area are summarized. In particular, the use of four typical photonic structures, namely, diffraction gratings, resonance cavities, plasmonic structures, and photonic crystals, in modulating the light absorption (e.g., for solar cells and photodetectors) or light emission (e.g., for color converters, lasers, and light emitting diodes) properties of QD‐based devices is discussed. A brief overview of QD‐based passive devices for on‐chip photonic circuit integration is also presented to provide a holistic view on future opportunities for QD/photonic structure‐integrated optoelectronic systems. The recent advances of the integrated quantum dot (QD)/photonic structures in many optoelectronic and optical devices for performance enhancement and new functionalities are summarized in this review. The use of four typical photonic structures applied in either modulating the light absorption or light emission properties of QD‐based devices is discussed, and the innovative QD‐based on‐chip photonic circuit is briefly overviewed.
胶体量子点(QD)是一种可溶液加工的纳米级光电构建模块,具有良好控制的光吸收和发射特性,已成为一种有前途的材料体系,能够与各种光子结构相互作用。集成量子点/光子结构已在许多光学和光电器件中成功实现,从而提高了性能和/或实现了新功能。在这篇综述中,总结了该研究领域的最新进展。特别是,讨论了四种典型光子结构,即衍射光栅、谐振腔、等离子体结构和光子晶体在调节基于量子点的器件的光吸收(例如用于太阳能电池和光电探测器)或光发射(例如用于颜色转换器、激光器和发光二极管)特性方面的应用。还简要概述了用于片上光子电路集成的基于量子点的无源器件,以便为量子点/光子结构集成光电子系统的未来机遇提供一个全面的视角。 这篇综述总结了集成量子点/光子结构在许多光电器件和光学器件中为提高性能和实现新功能所取得的最新进展。讨论了四种典型光子结构在调节基于量子点的器件的光吸收或光发射特性方面的应用,并简要概述了创新的基于量子点的片上光子电路。
参考文献(0)
被引文献(0)
From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots
DOI:
10.1063/1.4758990
发表时间:
2012-10-15
期刊:
APPLIED PHYSICS LETTERS
影响因子:
4
作者:
De Geyter, Bram;Komorowska, Katarzyna;Van Thourhout, Dries
通讯作者:
Van Thourhout, Dries
Plasmonic Schottky Nanojunctions for Tailoring the Photogeneration Profile in Thin Film Solar Cells
DOI:
10.1002/adom.201300460
发表时间:
2014-05-01
期刊:
ADVANCED OPTICAL MATERIALS
影响因子:
9
作者:
Beck, Fiona J.;Lasanta, Tania;Konstantatos, Gerasimos
通讯作者:
Konstantatos, Gerasimos
Understanding light trapping by resonant coupling to guided modes and the importance of the mode profile
DOI:
10.1364/oe.24.000759
发表时间:
2016-01-25
期刊:
OPTICS EXPRESS
影响因子:
3.8
作者:
Beck, Fiona J.;Stavrinadis, Alexandros;Konstantatos, Gerasimos
通讯作者:
Konstantatos, Gerasimos
Efficient Nanosecond Photoluminescence from Infrared PbS Quantum Dots Coupled to Plasmonic Nanoantennas
DOI:
10.1021/acsphotonics.6b00357
发表时间:
2016-10-01
期刊:
ACS PHOTONICS
影响因子:
7
作者:
Akselrod, Gleb M.;Weidman, Mark C.;Mikkelsen, Maiken H.
通讯作者:
Mikkelsen, Maiken H.
Surface Plasmon Polariton Couplers for Light Trapping in Thin-Film Absorbers and Their Application to Colloidal Quantum Dot Optoelectronics
DOI:
10.1021/ph5002704
发表时间:
2014-11-01
期刊:
ACS PHOTONICS
影响因子:
7
作者:
Beck, Fiona J.;Stavrinadis, Alexandros;Konstantatos, Gerasimos
通讯作者:
Konstantatos, Gerasimos

数据更新时间:{{ references.updateTime }}

关联基金

实时原位观测金属卤化物钙钛矿中晶界对离子移动与稳定性的影响
批准号:
51902273
批准年份:
2019
资助金额:
21.0
项目类别:
青年科学基金项目
Zhao N
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓