喵ID:9w2TV7免责声明

How to adaptively resolve evolutionary singularities in differential equations with symmetry

如何自适应求解具有对称性的微分方程中的演化奇点

基本信息

DOI:
--
发表时间:
2010
期刊:
影响因子:
--
通讯作者:
J. F. Williams
中科院分区:
文献类型:
--
作者: Chris Budd;J. F. Williams研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Many time-dependent partial differential equations have solutions which evolve to have features with small length scales. Examples are blow-up singularities and interfaces. To compute such features accurately it is essential to use some form of adaptive method which resolves fine length and time scales without being prohibitively expensive to implement. In this paper we will describe an r-adaptive method (based on moving mesh partial differential equations) which moves mesh points into regions where the solution is developing singular behaviour. The method exploits natural symmetries which are often present in partial differential equations describing physical phenomena. These symmetries give an insight into the scalings (of solution, space and time) associated with a developing singularity, and guide the adaptive procedure. In this paper the theory behind these methods will be developed and then applied to a number of physical problems which have (blow-up type) singularities linked to symmetries of the underlying PDEs. The paper is meant to be a practical guide towards solving such problems adaptively and contains an example of a Matlab code for resolving the singular behaviour of the semi-linear heat equation.
许多含时偏微分方程的解会演变成具有小尺度特征的形式。例如爆破奇点和界面。要精确计算这些特征,必须使用某种形式的自适应方法,这种方法能够解析精细的长度和时间尺度,且实施起来不会过于昂贵。在本文中,我们将描述一种r -自适应方法(基于移动网格偏微分方程),它将网格点移动到解呈现奇异行为的区域。该方法利用了在描述物理现象的偏微分方程中经常出现的自然对称性。这些对称性有助于深入了解与发展中的奇点相关的(解、空间和时间的)尺度变换,并指导自适应过程。在本文中,将阐述这些方法背后的理论,然后将其应用于一些具有(爆破型)奇点且与潜在偏微分方程的对称性相关的物理问题。本文旨在成为自适应解决此类问题的实用指南,并包含一个用于解析半线性热方程奇异行为的Matlab代码示例。
参考文献(0)
被引文献(23)

数据更新时间:{{ references.updateTime }}

J. F. Williams
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓