Network-on-chips (NoCs) are crucial for multicore and manycore System-on-Chip (SoC) architectures. However, the integration of third-party Intellectual Property (IP) cores in SoCs has introduced hardware vulnerabilities. Snoop-based attacks exploit these vulnerabilities by inserting malicious Hardware Trojans into routers, allowing them to extract sensitive information as packets traverse the NoC. To address these security concerns, we propose SNAC: Mitigation of Snoop-based Attacks in NoCs. SNAC employs a three-tier architecture with increasing security levels, each with proportional power and latency overheads. The first tier introduces path randomization to prevent attackers from predicting packet routes. In the second tier, we encrypt source and destination information using lightweight backward XoR encryption. The third tier combines techniques from tiers one and two, extending obfuscation along with path randomization. SNAC was evaluated using synthetic and real-world benchmarks. Our results show that SNAC incurs dynamic power overheads of 4.2%, 3.9%, and 6.1% for Tiers 1, 2, and 3 respectively, with area overheads of 6.2%, 4.2%, and 9.2%.
片上网络(NoC)对于多核和众核片上系统(SoC)架构至关重要。然而,在SoC中集成第三方知识产权(IP)核引入了硬件漏洞。基于窥探的攻击通过在路由器中插入恶意硬件木马利用这些漏洞,使得它们能够在数据包穿越NoC时提取敏感信息。为了解决这些安全问题,我们提出了SNAC:缓解NoC中基于窥探的攻击。SNAC采用具有递增安全级别的三层架构,每个级别都有相应比例的功耗和延迟开销。第一层引入路径随机化,以防止攻击者预测数据包路径。在第二层,我们使用轻量级反向异或加密对源和目的信息进行加密。第三层结合了第一层和第二层的技术,在路径随机化的同时扩展混淆。使用合成的和实际的基准对SNAC进行了评估。我们的结果表明,对于第1层、第2层和第3层,SNAC分别产生4.2%、3.9%和6.1%的动态功耗开销,面积开销分别为6.2%、4.2%和9.2%。