喵ID:8l8kWM免责声明

Resolving the adverse impact of mobility on myoelectric pattern recognition in upper-limb multifunctional prostheses

解决上肢多功能假肢移动性对肌电模式识别的不利影响

基本信息

DOI:
10.1016/j.compbiomed.2017.09.013
发表时间:
2017-11-01
影响因子:
7.7
通讯作者:
Li, Guanglin
中科院分区:
工程技术2区
文献类型:
Article
作者: Samuel, Oluwarotimi Williams;Li, Xiangxin;Li, Guanglin研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Electromyogram pattern recognition (EMG-PR) based control for upper-limb prostheses conventionally focuses on the classification of signals acquired in a controlled laboratory setting. in such a setting, relatively stable and high performances are often reported because subjects could consistently perform muscle contractions corresponding to a targeted limb motion. Meanwhile the clinical implementation of EMG-PR method is characterized by degradations in stability and classification performances due to the disparities between the constrained laboratory setting and clinical use. One of such disparities is the mobility of subject that would cause changes in the EMG signal patterns when eliciting identical limb motions in mobile scenarios. In this study, the effect of mobility on the performance of EMG-PR motion classifier was firstly investigated based on myoelectric and accelerometer signals acquired from six upper-limb amputees across four scenarios. Secondly, three methods were proposed to mitigate such effect on the EMG-PR motion classifier. From the obtained results, an average classification error (CE) of 9.50% (intra-scenario) was achieved when data from the same scenarios were used to train and test the EMG-PR classifier, while the CE increased to 18.48% (inter-scenario) when trained and tested with dataset from different scenarios. This implies that mobility would significantly lead to about 8.98% increase of classification error (p < 0.05). By applying the proposed methods, the degradation in classification performance was significantly reduced from 8.98% to 1.86% (Dual-stage sequential method), 3.17% (Hybrid strategy), and 4.64% (Multi scenario strategy). Hence, the proposed methods may potentially improve the clinical robustness of the currently available multifunctional prostheses.
基于肌电图模式识别(EMG - PR)的上肢假肢控制传统上侧重于在受控实验室环境中采集的信号分类。在这种环境下,经常报道有相对稳定和高性能的结果,因为受试者能够始终如一地进行与目标肢体运动相对应的肌肉收缩。同时,由于受限的实验室环境和临床使用之间的差异,EMG - PR方法在临床应用中的特点是稳定性和分类性能下降。其中一种差异是受试者的移动性,在移动场景中引发相同肢体运动时,这会导致肌电信号模式发生变化。在本研究中,首先基于从六个上肢截肢者在四种场景下采集的肌电和加速度计信号,研究了移动性对EMG - PR运动分类器性能的影响。其次,提出了三种方法来减轻这种对EMG - PR运动分类器的影响。从所得结果来看,当使用来自相同场景的数据训练和测试EMG - PR分类器时,平均分类误差(CE)达到9.50%(场景内),而当使用来自不同场景的数据集进行训练和测试时,CE增加到18.48%(场景间)。这意味着移动性将显著导致分类误差增加约8.98%(p < 0.05)。通过应用所提出的方法,分类性能的下降从8.98%显著降低到1.86%(双阶段顺序方法)、3.17%(混合策略)和4.64%(多场景策略)。因此,所提出的方法可能潜在地提高当前可用的多功能假肢的临床稳健性。
参考文献(38)
被引文献(0)

数据更新时间:{{ references.updateTime }}

Li, Guanglin
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓