喵ID:8MCA18免责声明

Hyperdimensional Feature Fusion for Out-of-Distribution Detection: Supplementary Material

用于分布外检测的超维特征融合:补充材料

基本信息

DOI:
--
发表时间:
2022
期刊:
影响因子:
--
通讯作者:
Feras Dayoub
中科院分区:
文献类型:
--
作者: Samuel Wilson;Tobias Fischer;Feras Dayoub研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

To complete the AUROC evaluation discussed in the main paper, we find the corresponding results for the OOD detection setting with CIFAR100 as the in-distribution dataset in Table 1 and Table 2. Table 1 provides the OOD detection results for the statistics stream but does not include the Energy-based model [7] due to no published results existing for the CIFAR100 setting. The results from Table 1 reinforce the findings from the main submission, with the gap between the top performers (HDFF and Gram) growing significantly between the other methods, averaging out to ≈10% AUROC difference. Comparative to these shifts in scores, the difference between HDFF and Gram remains small with HDFF taking significantly less computational time to attain its respective results. Table 2 displays the additional OOD detection results for the training stream but does not contain NMD [1] due to the absence of published results in the CIFAR100 setting. Similarly to the results from the main submission, we see that HDFF in combination with other state-of-theart OOD detectors increases performance across the majority of benchmarks. Specifically, we see that HDFF-1DS outperforms the Spectral Discrepancy Detector [12] in two of the four comparative benchmarks despite HDFF requiring 50x less computation to achieve these results. We note that in this CIFAR100 setting, Table 2 shows that HDFFMLP is weaker at the SVHN and CIFAR10 OOD datasets. Statistics Stream CIFAR100 OOD HDFF HDFF-Ens Gram MSP ML Dataset (Ours) (Ours) [11] [3] [2] iSun 95.2 95.8 98.8 82.5 85.5 TINc 93.1 93.8 98.2 83.5 86.3 TINr 95.4 96.0 98.5 81.6 84.3 LSUNc 91.7 92.5 96.0 83.9 86.5 LSUNr 94.5 95.3 99.3 82.7 85.5 SVHN 99.2 99.4 99.0 86.7 90.0 MNIST 99.8 99.8 99.9 82.4 84.6 KMNIST 99.5 99.6 99.99 86.6 87.5 FMNIST 98.4 98.4 99.4 91.0 93.3 DTD 92.9 93.5 97.5 78.1 79.7 CIFAR10 65.7 68.2 74.2 80.9 81.5 Average 93.2 93.8 96.4 83.6 85.9
为了完成主要论文中讨论的AUROC评估,我们找到了用CIFAR100的OOD检测设置的相应结果,因为表1和表2中的分发数据集。表1提供了统计流的OOD检测结果,但由于无法在CIFAR100的范围内列出coifar100的结果,因此不包括基于能量的模型[7]。表演者(HDFF和克)在其他方法之间显着生长,将≈10%的AUROC差异与这些分数相比,HDFF和Gram之间的差异仍然很小,而HDFF的计算时间显着较少,以获得其各自的训练结果,但与NMD相比,该结果均未显示出来。与主要提交的结果相似,我们看到HDFF与其他最先进的OOD检测器相结合,在大多数基准中增加了性能。 HDFFMLP在SVHN和CIFAR10 OOD数据集上较弱。 84.3 LSUNC 91.7 92.5 96.0 83.9 86.5 LSUNR 94.5 95.3 99.3 82.7 85.5 SVHN 99.2 99.4 99.0 86.7 90.0 MNIST 99.8 99.8 99.9 82.4 84.6 KMNIST 99.5 99.5 99.6 99.6 99.6 86.6 87.5 2 74.2 80.9 81.5平均93.2 93.8 96.4 83.6 85.9
参考文献(2)
被引文献(0)
Out-of-Distribution Detection Using Union of 1-Dimensional Subspaces
DOI:
10.1109/cvpr46437.2021.00933
发表时间:
2021-06
期刊:
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
影响因子:
0
作者:
Alireza Zaeemzadeh;N. Bisagno;Zeno Sambugaro;N. Conci;Nazanin Rahnavard;M. Shah
通讯作者:
Alireza Zaeemzadeh;N. Bisagno;Zeno Sambugaro;N. Conci;Nazanin Rahnavard;M. Shah
Scaling Out-of-Distribution Detection for Real-World Settings
针对现实世界设置扩展分布外检测
DOI:
10.48550/arxiv.1911.11132
发表时间:
2022
期刊:
International Conference on Machine Learning
影响因子:
0
作者:
Basart, Steven;Mazeika Mantas;Mostajabi Mohammadreza;Steinhardt Jacob;Song Dawn
通讯作者:
Song Dawn

数据更新时间:{{ references.updateTime }}

Feras Dayoub
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓