喵ID:87joyP免责声明

Predicting "About-to-Eat" Moments for Just-in-Time Eating Intervention

基本信息

DOI:
10.1145/2896338.2896359
发表时间:
2016-01-01
期刊:
DH'16: PROCEEDINGS OF THE 2016 DIGITAL HEALTH CONFERENCE
影响因子:
--
通讯作者:
Johns, Paul
中科院分区:
其他
文献类型:
Proceedings Paper
作者: Rahman, Tauhidur;Czerwinski, Mary;Johns, Paul研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Various wearable sensors capturing body vibration, jaw movement, hand gesture, etc., have shown promise in detecting when one is currently eating. However, based on existing literature and user surveys conducted in this study, we argue that a Just-in-Time eating intervention, triggered upon detecting a current eating event, is sub-optimal. An eating intervention triggered at "About-to-Eat" moments could provide users with a further opportunity to adopt a better and healthier eating behavior. In this work, we present a wearable sensing framework that predicts "About-to-Eat"moments and the "Time until the Next Eating Event". The wearable sensing framework consists of an array of sensors that capture physical activity, location, heart rate, electrodermal activity, skin temperature and caloric expenditure. Using signal processing and machine learning on this raw multimodal sensor stream, we train an "Aboutto- Eat" moment classifier that reaches an average recall of 77%. The "Time until the Next Eating Event" regression model attains a correlation coefficient of 0.49. Personalization further increases the performance of both of the models to an average recall of 85% and correlation coefficient of 0.65. The contributions of this paper include user surveys related to this problem, the design of a system to predict about to eat moments and a regression model used to train multimodal sensory data in real time for potential eating interventions for the user.
各种可穿戴传感器能够捕捉身体振动、下颌运动、手势等信息,在检测一个人当前是否正在进食方面显示出了潜力。然而,根据现有文献以及本研究中进行的用户调查,我们认为,在检测到当前进食事件时触发的即时进食干预并非最佳选择。在“即将进食”时刻触发的进食干预能够为用户提供进一步的机会,使其采取更好、更健康的进食行为。在这项工作中,我们提出了一种可穿戴传感框架,该框架能够预测“即将进食”时刻以及“到下一次进食事件的时间”。可穿戴传感框架由一系列传感器组成,这些传感器能够捕捉身体活动、位置、心率、皮肤电活动、皮肤温度和热量消耗。通过对原始的多模态传感器数据流进行信号处理和机器学习,我们训练了一个“即将进食”时刻分类器,其平均召回率达到77%。“到下一次进食事件的时间”回归模型的相关系数达到0.49。个性化进一步将这两个模型的性能提高到平均召回率85%和相关系数0.65。本文的贡献包括与该问题相关的用户调查、一个预测即将进食时刻的系统设计以及一个用于实时训练多模态感官数据以便为用户进行潜在进食干预的回归模型。
参考文献(38)
被引文献(0)

数据更新时间:{{ references.updateTime }}

Johns, Paul
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓