喵ID:7GjyFe免责声明

Guiding conformation space search with an all-atom energy potential.

用全原子能量势指导构象空间搜索。

基本信息

DOI:
10.1002/prot.22123
发表时间:
2008-12
影响因子:
2.9
通讯作者:
Brock, Oliver
中科院分区:
生物学4区
文献类型:
Journal Article
作者: Brunette, T. J.;Brock, Oliver研究方向: Biochemistry & Molecular Biology;BiophysicsMeSH主题词: --
来源链接:pubmed详情页地址

文献摘要

The most significant impediment for protein structure prediction is the inadequacy of conformation space search. Conformation space is too large and the energy landscape too rugged for existing search methods to consistently find near-optimal minima. To alleviate this problem, we present model-based search, a novel conformation space search method. Model-based search uses highly accurate information obtained during search to build an approximate, partial model of the energy landscape. Model-based search aggregates information in the model as it progresses, and in turn uses this information to guide exploration towards regions most likely to contain a near-optimal minimum. We validate our method by predicting the structure of 32 proteins, ranging in length from 49 to 213 amino acids. Our results demonstrate that model-based search is more effective at finding low-energy conformations in high-dimensional conformation spaces than existing search methods. The reduction in energy translates into structure predictions of increased accuracy.
蛋白质结构预测的最大障碍是构象空间搜索的不足。构象空间太大,能量景观太崎岖,现有的搜索方法无法始终找到接近最优的最小值。为了缓解这个问题,我们提出了基于模型的搜索,一种新的构象空间搜索方法。基于模型的搜索利用在搜索过程中获得的高度准确的信息来构建能量景观的近似、部分模型。基于模型的搜索在进展过程中聚集模型中的信息,并反过来利用这些信息引导探索朝着最有可能包含接近最优最小值的区域进行。我们通过预测32种蛋白质的结构来验证我们的方法,这些蛋白质的长度从49到213个氨基酸不等。我们的结果表明,基于模型的搜索在高维构象空间中寻找低能构象比现有的搜索方法更有效。能量的降低转化为更高准确性的结构预测。
参考文献(41)
被引文献(31)
MONTE-CARLO-MINIMIZATION APPROACH TO THE MULTIPLE-MINIMA PROBLEM IN PROTEIN FOLDING
DOI:
10.1073/pnas.84.19.6611
发表时间:
1987-10-01
期刊:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
影响因子:
11.1
作者:
LI, ZQ;SCHERAGA, HA
通讯作者:
SCHERAGA, HA
Conformation-Family Monte Carlo (CFMC): An efficient computational method for identifying the low-energy states of a macromolecule
DOI:
10.1002/1522-2675(20000906)83:9<2214::aid-hlca2214>3.0.co;2-e
发表时间:
2000-01-01
期刊:
HELVETICA CHIMICA ACTA
影响因子:
1.8
作者:
Pillardy, J;Czaplewski, C;Scheraga, HA
通讯作者:
Scheraga, HA
Critical assessment of methods of protein structure prediction (CASP)-round V
DOI:
10.1002/prot.10556
发表时间:
2003-01-01
期刊:
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS
影响因子:
2.9
作者:
Moult, J;Fidelis, K;Hubbard, T
通讯作者:
Hubbard, T
New optimization method for conformational energy calculations on polypeptides: Conformational space annealing
DOI:
10.1002/(sici)1096-987x(19970715)18:9<1222::aid-jcc10>3.0.co;2-7
发表时间:
1997-07-15
期刊:
JOURNAL OF COMPUTATIONAL CHEMISTRY
影响因子:
3
作者:
Lee, J;Scheraga, HA;Rackovsky, S
通讯作者:
Rackovsky, S
Adaptation in natural and artificial systems : an introductory analysis with application to biology
DOI:
10.7551/mitpress/1090.001.0001
发表时间:
1975-01-01
期刊:
Control and artificial intelligence
影响因子:
0
作者:
Holland, J
通讯作者:
Holland, J

数据更新时间:{{ references.updateTime }}

关联基金

Predicting Protein Structure with Guided Conformation Space Search
批准号:
8111224
批准年份:
2006
资助金额:
22.79
项目类别:
Brock, Oliver
通讯地址:
Univ Massachusetts, Dept Comp Sci, Robot & Biol Lab, Amherst, MA 01003 USA
所属机构:
Univ MassachusettsnUniversity of Massachusetts SystemnUniversity of Massachusetts AmherstnUniversity of Massachusetts Amherst College of Natural SciencesnUniversity of Massachusetts Amherst Department of Computer Science
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓