喵ID:7AsqB6免责声明

<span class="sans-serif">ExTrA</span>: Explaining architectural design tradeoff spaces via dimensionality reduction

基本信息

DOI:
10.1016/j.jss.2022.111578
发表时间:
2023-04-01
期刊:
Research article
影响因子:
--
通讯作者:
Bradley Schmerl
中科院分区:
文献类型:
special section on architecting for the digital society; edited by dr. stefan biffl, dr. elena navarro, dr. raffaela mirandola, and dr. danny weyns
作者: Javier Cámara;Rebekka Wohlrab;David Garlan;Bradley Schmerl研究方向: -- MeSH主题词: --
来源链接:pubmed详情页地址

文献摘要

In software design, guaranteeing the correctness of run-time system behavior while achieving an acceptable balance among multiple quality attributes remains a challenging problem. Moreover, providing guarantees about the satisfaction of those requirements when systems are subject to uncertain environments is even more challenging. While recent developments in architectural analysis techniques can assist architects in exploring the satisfaction of quantitative guarantees across the design space, existing approaches are still limited because they do not explicitly link design decisions to satisfaction of quality requirements. Furthermore, the amount of information they yield can be overwhelming to a human designer, making it difficult to see the forest for the trees. In this paper we presentExTrA(ExplainingTradeoffs of softwareArchitecture design spaces), an approach to analyzing architectural design spaces that addresses these limitations and provides a basis for explaining design tradeoffs. Our approach employs dimensionality reduction techniques employed in machine learning pipelines like Principal Component Analysis (PCA) and Decision Tree Learning (DTL) to enable architects to understand how design decisions contribute to the satisfaction of extra-functional properties across the design space. Our results show feasibility of the approach in two case studies and evidence that combining complementary techniques like PCA and DTL is a viable approach to facilitate comprehension of tradeoffs in poorly-understood design spaces.
在软件设计中,在多个质量属性之间实现可接受的平衡的同时保证运行时系统行为的正确性仍然是一个具有挑战性的问题。此外,当系统处于不确定的环境中时,对这些需求的满足提供保证则更具挑战性。虽然架构分析技术的最新发展可以帮助架构师探索设计空间中定量保证的满足情况,但现有方法仍然存在局限性,因为它们没有明确地将设计决策与质量需求的满足联系起来。此外,它们产生的信息量可能会让人类设计师应接不暇,导致难以看清整体情况。在本文中,我们提出了ExTrA(软件架构设计空间的权衡解释),这是一种分析架构设计空间的方法,它解决了这些局限性,并为解释设计权衡提供了基础。我们的方法采用了机器学习流程中使用的降维技术,如主成分分析(PCA)和决策树学习(DTL),使架构师能够理解设计决策如何在设计空间中对非功能属性的满足产生影响。我们的结果在两个案例研究中显示了该方法的可行性,并证明了结合PCA和DTL等互补技术是一种可行的方法,有助于在理解不充分的设计空间中理解权衡。
参考文献(0)
被引文献(0)

数据更新时间:{{ references.updateTime }}

Bradley Schmerl
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓