The multiplication of dislocations determines the trajectories of microstructure evolution during plastic deformation. It has been recognized that the dislocation storage and the deformation-driven subgrain formation are correlated—the principle of similitude, where the dislocation density (ρ_i) scales self-similarly with the subgrain size (δ): $(\delta):\delta \sqrt {{\rho _{\rm{i}}}} \sim $ ∼ constant. Here, the robustness of this concept in Cu is probed utilizing large strain machining across a swathe of severe shear deformation conditions—strains in the range 1–10 and strain-rates 10–10^3/s. Deformation strain, strain-rate, and temperature characterizations are juxtaposed with electron microscopy, and dislocation densities are measured by quantification of broadening of X-ray diffraction peaks of crystallographic planes. We parameterize the variation of dislocation density as a function of strain and a rate parameter R , a function of strain-rate, temperature, and material constants. We confirm the preservation of similitude between dislocation density and the subgrain structure across orders-of-magnitude of thermomechanical conditions.
位错的增殖决定了塑性变形过程中微观结构演变的轨迹。人们已经认识到,位错储存和变形驱动的亚晶粒形成是相关的——相似性原理,即位错密度(ρ_i)与亚晶粒尺寸(δ)自相似地成比例:$(\delta):\delta \sqrt {{\rho _{\rm{i}}}} \sim$ ∼常数。在此,利用在一系列剧烈剪切变形条件下(应变范围为1 - 10,应变速率为10 - 10³/秒)的大应变加工,对这一概念在铜中的稳健性进行了探究。变形应变、应变速率和温度特性与电子显微镜分析相结合,并且通过对晶体学平面的X射线衍射峰展宽进行量化来测量位错密度。我们将位错密度的变化参数化为应变以及速率参数R的函数,R是应变速率、温度和材料常数的函数。我们证实了在热机械条件的数量级范围内,位错密度和亚晶粒结构之间的相似性保持不变。