喵ID:5uG3e3免责声明

基于深度学习的放射影像组学特征预测局部晚期直肠癌新辅助放化疗反应研究

基本信息

DOI:
10.3760/cma.j.cn113030-20191112-00472
发表时间:
2020
期刊:
中华放射肿瘤学杂志
影响因子:
--
通讯作者:
金晶
中科院分区:
其他
文献类型:
--
作者: 李宁;Sharon Qi;冯玲玲;唐源;李晔雄;任骅;房辉;唐玉;陈波;卢宁宁;景灏;亓姝楠;王淑莲;刘跃平;宋永文;金晶研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Objective To explore the effectiveness of deep learning-based methods in extracting radiomics features from pre-treatment MRI to predict the response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Methods From 2016 to 2017, 43 patients with locally advanced rectal cancer who received neoadjuvant concurrent chemoradiotherapy were included. All patients underwent total mesorectal excision 6 - 12 weeks after treatment. Diffusion-weighted imaging (DWI) sequence MRI was obtained before concurrent chemoradiotherapy. According to postoperative pathology, imaging examination or colonoscopy, the patients were divided into a treatment response group (22 cases) and a treatment non-response group (21 cases). Traditional computer-aided diagnosis methods and a pre-trained convolutional neural network were used respectively to extract manual and deep learning-based radiomics (DLR) features from the apparent diffusion coefficient maps of the DWI sequence. The least absolute shrinkage and selection operator Logistic regression model was established using the extracted features to predict the treatment response. The receiver operating characteristic curve was used to evaluate the model performance through 20 repetitions of stratified 4-fold cross-validation. Results The average area under the curve of the model constructed using DLR was 0.73 (standard error 0.58 - 0.80). Conclusion The radiomics features extracted from pre-treatment MRI using deep learning methods have high accuracy in predicting the neoadjuvant treatment response in patients with locally advanced rectal cancer.
目的探讨基于深度学习的方法,从疗前MRI中提取放射影像组学特征预测局部晚期直肠癌新辅助放化疗反应的有效性。方法2016-2017年纳入43例局部晚期直肠癌新辅助同步放化疗患者。均在疗后6~12周接受全系膜直肠切除术。弥散加权成像(DWI)序列MRI在同步放化疗前获得。根据术后病理、影像学检查或肠镜检查评估新辅助治疗后反应,将患者分为治疗反应组(22例)和治疗无反应组(21例)。分别采用传统的计算机辅助诊断方法和预先训练的卷积神经网络,从DWI序列的表观扩散系数图中提取手工和基于深度学习的影像组学(DLR)特征。利用提取的特征建立最小绝对收缩和选择算子Logistic回归模型,预测治疗反应。使用受试者工作特性曲线,通过重复20次分层4倍交叉验证评估模型性能。结果使用基于DLR构建模型的平均曲线下面积为0.73(标准误为0.58~0.80)。结论从疗前MRI中基于深度学习方法提取的影像组学特征在预测局部晚期直肠癌患者新辅助治疗反应方面准确度高。
参考文献(0)
被引文献(0)

数据更新时间:{{ references.updateTime }}

关联基金

lncRNA PRDM11抑制直肠癌同步放化疗敏感性的机制及其联合影像组学建立新疗效评估模型的研究
批准号:
81871509
批准年份:
2018
资助金额:
57.0
项目类别:
面上项目
金晶
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓