喵ID:5eWbDT免责声明

Robust Jump Regressions

鲁棒跳跃回归

基本信息

DOI:
--
发表时间:
2017
期刊:
影响因子:
--
通讯作者:
George Tauchen
中科院分区:
文献类型:
--
作者: Jia Li;V. Todorov;George Tauchen研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

ABSTRACT We develop robust inference methods for studying linear dependence between the jumps of discretely observed processes at high frequency. Unlike classical linear regressions, jump regressions are determined by a small number of jumps occurring over a fixed time interval and the rest of the components of the processes around the jump times. The latter are the continuous martingale parts of the processes as well as observation noise. By sampling more frequently the role of these components, which are hidden in the observed price, shrinks asymptotically. The robustness of our inference procedure is with respect to outliers, which are of particular importance in the current setting of relatively small number of jump observations. This is achieved by using nonsmooth loss functions (like L1) in the estimation. Unlike classical robust methods, the limit of the objective function here remains nonsmooth. The proposed method is also robust to measurement error in the observed processes, which is achieved by locally smoothing the high-frequency increments. In an empirical application to financial data, we illustrate the usefulness of the robust techniques by contrasting the behavior of robust and ordinary least regression (OLS)-type jump regressions in periods including disruptions of the financial markets such as so-called “flash crashes.” Supplementary materials for this article are available online.
摘要我们开发了可靠的推理方法,以研究高频的离散观察过程的跳跃之间的线性依赖性。跳跃时间周围的过程是过程的连续部分以及观察噪声。隐藏在观察到的价格中,我们的推理程序的鲁棒性是相对于离群值的,这在当前相对较少的跳跃观测中尤为重要。 L1)在估计中,与经典的鲁棒方法不同,此处的目标函数的限制仍然不合时宜。观察到的过程是通过在经验应用中局部平滑高频增量来实现的。包括本文的“闪存崩溃”等金融市场的中断。
参考文献(0)
被引文献(15)

数据更新时间:{{ references.updateTime }}

George Tauchen
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓