喵ID:5WfMki免责声明

SNP by SNP by environment interaction network of alcoholism.

基本信息

DOI:
10.1186/s12918-017-0403-7
发表时间:
2017-03-14
影响因子:
--
通讯作者:
Alterovitz G
中科院分区:
生物2区
文献类型:
Journal Article
作者: Zollanvari A;Alterovitz G研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Alcoholism has a strong genetic component. Twin studies have demonstrated the heritability of a large proportion of phenotypic variance of alcoholism ranging from 50–80%. The search for genetic variants associated with this complex behavior has epitomized sequence-based studies for nearly a decade. The limited success of genome-wide association studies (GWAS), possibly precipitated by the polygenic nature of complex traits and behaviors, however, has demonstrated the need for novel, multivariate models capable of quantitatively capturing interactions between a host of genetic variants and their association with non-genetic factors. In this regard, capturing the network of SNP by SNP or SNP by environment interactions has recently gained much interest. Here, we assessed 3,776 individuals to construct a network capable of detecting and quantifying the interactions within and between plausible genetic and environmental factors of alcoholism. In this regard, we propose the use of first-order dependence tree of maximum weight as a potential statistical learning technique to delineate the pattern of dependencies underpinning such a complex trait. Using a predictive based analysis, we further rank the genes, demographic factors, biological pathways, and the interactions represented by our SNP SNPE network. The proposed framework is quite general and can be potentially applied to the study of other complex traits.  The online version of this article (doi:10.1186/s12918-017-0403-7) contains supplementary material, which is available to authorized users.
酗酒具有很强的遗传因素。双胞胎研究表明,酗酒表型变异的很大一部分具有50% - 80%的遗传率。近十年来,对与这种复杂行为相关的基因变异的探索已成为基于序列研究的典范。然而,全基因组关联研究(GWAS)取得的成功有限,这可能是由复杂性状和行为的多基因本质所导致的,这表明需要能够定量捕捉大量基因变异之间的相互作用以及它们与非基因因素关联的新型多变量模型。在这方面,捕捉单核苷酸多态性(SNP)之间或SNP与环境相互作用的网络最近引起了极大的关注。 在此,我们对3776名个体进行了评估,以构建一个能够检测和量化酗酒的合理遗传和环境因素内部及之间相互作用的网络。在这方面,我们提议使用最大权重一阶依赖树作为一种潜在的统计学习技术,来描绘支撑这种复杂性状的依赖模式。通过基于预测的分析,我们进一步对基因、人口统计学因素、生物学通路以及我们的SNP - SNPE网络所代表的相互作用进行了排序。所提出的框架相当通用,有可能应用于其他复杂性状的研究。 本文的在线版本(doi:10.1186/s12918 - 2017 - 0403 - 7)包含补充材料,授权用户可获取。
参考文献(0)
被引文献(0)

数据更新时间:{{ references.updateTime }}

Alterovitz G
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓