喵ID:4n2Vrl免责声明

NollySenti: Leveraging Transfer Learning and Machine Translation for Nigerian Movie Sentiment Classification

基本信息

DOI:
10.48550/arxiv.2305.10971
发表时间:
2023-05
期刊:
ArXiv
影响因子:
--
通讯作者:
Iyanuoluwa Shode;David Ifeoluwa Adelani;J. Peng;Anna Feldman
中科院分区:
其他
文献类型:
--
作者: Iyanuoluwa Shode;David Ifeoluwa Adelani;J. Peng;Anna Feldman研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Africa has over 2000 indigenous languages but they are under-represented in NLP research due to lack of datasets. In recent years, there have been progress in developing labelled corpora for African languages. However, they are often available in a single domain and may not generalize to other domains. In this paper, we focus on the task of sentiment classification for cross-domain adaptation. We create a new dataset, Nollywood movie reviews for five languages widely spoken in Nigeria (English, Hausa, Igbo, Nigerian Pidgin, and Yoruba). We provide an extensive empirical evaluation using classical machine learning methods and pre-trained language models. By leveraging transfer learning, we compare the performance of cross-domain adaptation from Twitter domain, and cross-lingual adaptation from English language. Our evaluation shows that transfer from English in the same target domain leads to more than 5% improvement in accuracy compared to transfer from Twitter in the same language. To further mitigate the domain difference, we leverage machine translation from English to other Nigerian languages, which leads to a further improvement of 7% over cross-lingual evaluation. While machine translation to low-resource languages are often of low quality, our analysis shows that sentiment related words are often preserved.
非洲有2000多种本土语言,但由于缺乏数据集,它们在自然语言处理研究中代表性不足。近年来,在为非洲语言开发标注语料库方面取得了一些进展。然而,这些语料库往往仅适用于单一领域,可能无法推广到其他领域。在本文中,我们专注于跨领域适应的情感分类任务。我们创建了一个新的数据集,即针对尼日利亚广泛使用的五种语言(英语、豪萨语、伊博语、尼日利亚洋泾浜语和约鲁巴语)的诺莱坞电影评论数据集。我们使用经典机器学习方法和预训练语言模型进行了广泛的实证评估。通过利用迁移学习,我们比较了从推特领域进行跨领域适应以及从英语进行跨语言适应的性能。我们的评估表明,与从同一语言的推特进行迁移相比,从同一目标领域的英语进行迁移可使准确率提高5%以上。为了进一步缓解领域差异,我们利用从英语到其他尼日利亚语言的机器翻译,这比跨语言评估又提高了7%。虽然针对低资源语言的机器翻译质量往往较低,但我们的分析表明,与情感相关的词汇往往得以保留。
参考文献(42)
被引文献(4)

数据更新时间:{{ references.updateTime }}

Iyanuoluwa Shode;David Ifeoluwa Adelani;J. Peng;Anna Feldman
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓