喵ID:3ux4yG免责声明

New insights into experimental stratified flows obtained through physics-informed neural networks

基本信息

DOI:
10.1017/jfm.2024.49
发表时间:
2024-02
影响因子:
3.7
通讯作者:
Lu Zhu;Xianyang Jiang;A. Lefauve;R. Kerswell;P. Linden
中科院分区:
工程技术2区
文献类型:
--
作者: Lu Zhu;Xianyang Jiang;A. Lefauve;R. Kerswell;P. Linden研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Abstract We develop a physics-informed neural network (PINN) to significantly augment state-of-the-art experimental data of stratified flows. A fully connected deep neural network is trained using time-resolved experimental data in a salt-stratified inclined duct experiment, consisting of three-component velocity fields and density fields measured simultaneously in three dimensions at Reynolds number $= O(10^3)$ and at Prandtl or Schmidt number $=700$. The PINN enforces incompressibility, the governing equations for momentum and buoyancy, and the boundary conditions at the duct walls. These physics-constrained, augmented data are output at an increased spatio-temporal resolution and demonstrate five key results: (i) the elimination of measurement noise; (ii) the correction of distortion caused by the scanning measurement technique; (iii) the identification of weak but dynamically important three-dimensional vortices of Holmboe waves; (iv) the revision of turbulent energy budgets and mixing efficiency; and (v) the prediction of the latent pressure field and its role in the observed asymmetric Holmboe wave dynamics. These results mark a significant step forward in furthering the reach of experiments, especially in the context of stratified turbulence, where accurately computing three-dimensional gradients and resolving small scales remain enduring challenges.
摘要:我们开发了一种物理信息神经网络(PINN),以显著增强分层流的最先进实验数据。在一个盐分层倾斜管道实验中,利用时间分辨实验数据对一个全连接深度神经网络进行训练,该实验包含在雷诺数$= O(10^3)$以及普朗特数或施密特数$=700$时在三维空间中同时测量的三分量速度场和密度场。PINN强制满足不可压缩性、动量和浮力的控制方程以及管道壁的边界条件。这些受物理约束的增强数据以更高的时空分辨率输出,并展示了五个关键结果:(i)消除测量噪声;(ii)校正由扫描测量技术引起的失真;(iii)识别出霍尔姆博波中微弱但具有动力学重要性的三维涡旋;(iv)修正湍流能量收支和混合效率;(v)预测潜在压力场及其在观测到的不对称霍尔姆博波动力学中的作用。这些结果在拓展实验范围方面迈出了重要的一步,特别是在分层湍流的背景下,其中准确计算三维梯度和解析小尺度仍然是长期的挑战。
参考文献(33)
被引文献(1)

数据更新时间:{{ references.updateTime }}

关联基金

How does stably-stratified shear-driven turbulence mix our oceans and estuaries?
批准号:
NE/W008971/1
批准年份:
2023
资助金额:
89.48
项目类别:
Fellowship
Lu Zhu;Xianyang Jiang;A. Lefauve;R. Kerswell;P. Linden
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓