喵ID:3e89do免责声明

MR Image Reconstruction Using a Combination of Compressed Sensing and Partial Fourier Acquisition: ESPReSSo

基本信息

DOI:
10.1109/tmi.2016.2577642
发表时间:
2016-11-01
影响因子:
10.6
通讯作者:
Schmidt, H.
中科院分区:
工程技术1区
文献类型:
Article
作者: Kuestner, T.;Wuerslin, C.;Schmidt, H.研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

A Cartesian subsampling scheme is proposed incorporating the idea of PF acquisition and variable-density Poisson Disc (vdPD) subsampling by redistributing the sampling space onto a smaller region aiming to increase k-space sampling density for a given acceleration factor. Especially the normally sparse sampled high-frequency components benefit from this sampling redistribution, leading to improved edge delineation. The prospective subsampled and compacted k-space can be reconstructed by a seamless combination of a CS-algorithm with a Hermitian symmetry constraint accounting for the missing part of the k-space. This subsampling and reconstruction scheme is called Compressed Sensing Partial Subsampling (ESPReSSo) and was tested on in-vivo abdominal MRI datasets. Different reconstruction methods and regularizations are investigated and analyzed via global (intensity-based) and local (region-of-interest and line evaluation) image metrics, to conclude a clinical feasible setup. Results substantiate that ESPReSSo can provide improved edge delineation and regional homogeneity for multidimensional and multi-coil MRI datasets and is therefore useful in applications depending on well-defined tissue boundaries, such as image registration and segmentation or detection of small lesions in clinical diagnostics.
提出了一种笛卡尔欠采样方案,该方案结合了PF采集和可变密度泊松圆盘(vdPD)欠采样的思想,通过将采样空间重新分布到一个更小的区域,旨在针对给定的加速因子提高k空间采样密度。特别是通常稀疏采样的高频成分从这种采样重新分布中受益,从而改善了边缘描绘。预期的欠采样和压缩的k空间可以通过将压缩感知算法与考虑k空间缺失部分的厄米对称性约束无缝结合来重建。这种欠采样和重建方案被称为压缩感知部分欠采样(ESPReSSo),并在体内腹部MRI数据集上进行了测试。通过全局(基于强度)和局部(感兴趣区域和线条评估)图像指标对不同的重建方法和正则化进行了研究和分析,以得出一种临床可行的设置。结果证实,ESPReSSo可以为多维和多线圈MRI数据集提供更好的边缘描绘和区域均匀性,因此在依赖明确组织边界的应用中很有用,例如临床诊断中的图像配准、分割或小病灶检测。
参考文献(49)
被引文献(0)

数据更新时间:{{ references.updateTime }}

关联基金

Schmidt, H.
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓