The objective of this study is to test the feasibility of a semi-automated scoring system for the Toronto Western Spasmodic Torticollis Scale (TWSTRS) severity scale in patients with cervical dystonia. The TWSTRS requires training and experience. We previously developed a system to measure neck angle by analyzing three-dimensional position, obtained using Kinect, a marker-less three-dimensional depth sensor. The system can track patients' faces and bodies, automatically analyze neck angles, and semi-automatically calculate the TWSTRS severity scale score. We compared the TWSTRS severity scale scores calculated by the system with the video-based scores calculated by a neurologist trained in movement disorders. A correlation coefficient analysis was then conducted. Absolute accuracy was measured using intra-class correlation (ICC) (3,1), with 95% limits of agreement. To analyze the subscales, Cohen's kappa coefficient (kappa) was calculated. A p-value of
本研究的目的是测试一种针对颈部肌张力障碍患者的多伦多西部痉挛性斜颈量表(TWSTRS)严重程度量表半自动评分系统的可行性。TWSTRS需要培训和经验。我们先前开发了一种通过分析三维位置来测量颈部角度的系统,该三维位置是使用Kinect(一种无标记三维深度传感器)获得的。该系统能够追踪患者的面部和身体,自动分析颈部角度,并半自动计算TWSTRS严重程度量表评分。我们将该系统计算出的TWSTRS严重程度量表评分与一位接受过运动障碍培训的神经科医生基于视频计算出的评分进行了比较。然后进行了相关系数分析。使用组内相关系数(ICC)(3,1)以及95%的一致性界限来测量绝对准确性。为了分析子量表,计算了科恩卡帕系数(kappa)。一个p值(此处似乎句子不完整)