喵ID:2Bd0FE免责声明

SEED: Confidential Big Data Workflow Scheduling with Intel SGX Under Deadline Constraints

基本信息

DOI:
10.1109/scc49832.2020.00023
发表时间:
2020-11
期刊:
2020 IEEE International Conference on Services Computing (SCC)
影响因子:
--
通讯作者:
Ishtiaq Ahmed;S. Mofrad;Shiyong Lu;Changxin Bai;Fengwei Zhang;D. Che
中科院分区:
其他
文献类型:
--
作者: Ishtiaq Ahmed;S. Mofrad;Shiyong Lu;Changxin Bai;Fengwei Zhang;D. Che研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Recently, cloud platforms play an essential role in large-scale big data analytics and especially running scientific workflows. In contrast to traditional on-premise computing environments, where the number of resources is bounded, cloud computing can provide practically unlimited resources to a workflow application based on a pay-as-you-go pricing model. One challenge of using cloud computing is the protection of the privacy of the confidential workflow’s tasks, whose proprietary algorithm implementations are intellectual properties of the respective stakeholders. Another one is the monetary cost optimization of executing workflows in the cloud while satisfying a user-defined deadline. In this paper, we use the Intel Software Guard eXtensions (SGX) as a Trusted Execution Environment (TEE) to support the confidentiality of individual workflow tasks. Based on this, we propose a deadline-constrained and SGX-aware workflow scheduling algorithm, called SEED (SGX, Efficient, Effective, Deadline Constrained), to address these two challenges. SEED features several heuristics, including exploiting the longest critical paths and reuse of extra times in existing virtual machine instances. Our experiments show that SEED outperforms the representative algorithm, IC-PCP, in most cases in monetary cost while satisfying the given user-defined deadline. To our best knowledge, this is the first workflow scheduling algorithm that considers protecting the confidentiality of workflow tasks in a public cloud computing environment.
近年来,云平台在大规模大数据分析,尤其是运行科学工作流方面发挥着至关重要的作用。与资源数量有限的传统本地计算环境不同,云计算能够基于按需付费的定价模式为工作流应用提供几乎无限的资源。使用云计算的一个挑战是保护机密工作流任务的隐私,这些任务的专有算法实现是相关利益相关者的知识产权。另一个挑战是在满足用户定义的期限的同时,优化在云中执行工作流的货币成本。在本文中,我们使用英特尔软件防护扩展(SGX)作为可信执行环境(TEE)来支持单个工作流任务的机密性。在此基础上,我们提出了一种有期限约束且具有SGX感知的工作流调度算法,称为SEED(SGX,高效、有效、有期限约束),以应对这两个挑战。SEED具有多种启发式方法,包括利用最长关键路径以及在现有虚拟机实例中重复利用额外时间。我们的实验表明,在满足给定的用户定义期限的情况下,SEED在大多数情况下在货币成本方面优于代表性算法IC - PCP。据我们所知,这是第一个在公共云计算环境中考虑保护工作流任务机密性的工作流调度算法。
参考文献(19)
被引文献(4)

数据更新时间:{{ references.updateTime }}

关联基金

CICI: RSARC: Infrastructure Support for Securing Large-Scale Scientific Workflows
批准号:
1738929
批准年份:
2017
资助金额:
100
项目类别:
Standard Grant
Ishtiaq Ahmed;S. Mofrad;Shiyong Lu;Changxin Bai;Fengwei Zhang;D. Che
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓