喵ID:1Md7kr免责声明

A family of permutationally invariant quantum codes

一系列排列不变的量子码

基本信息

DOI:
--
发表时间:
2023
期刊:
影响因子:
6.4
通讯作者:
Alexander Barg
中科院分区:
物理与天体物理2区
文献类型:
--
作者: Arda Aydin;Max A. Alekseyev;Alexander Barg研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

We construct a new family of permutationally invariant codes that correct t Pauli errors for any t≥1. We also show that codes in the new family correct quantum deletion errors as well as spontaneous decay errors. Our construction contains some of the previously known permutationally invariant quantum codes as particular cases, which also admit transversal gates. In many cases, the codes in the new family are shorter than the best previously known explicit permutationally invariant codes for Pauli errors and deletions. Furthermore, our new code family includes a new ((4,2,2)) optimal single-deletion-correcting code. As a separate result, we generalize the conditions for permutationally invariant codes to correct t Pauli errors from the previously known results for t=1 to any number of errors. For small t, these conditions can be used to construct new examples of codes by computer.
我们构建了一个新的置换式代码,该代码纠正了任何t≥1的pauli错误。量子代码是特定的情况,在许多情况下,新家庭中的代码比以前最佳的明确说明要短对Pauli错误和删除的置换代码。 T = 1的t = 1到任何数量的误差,这些条件可用于构造计算机的新示例。
参考文献(1)
被引文献(4)
An Overview of Capacity Results for Synchronization Channels
DOI:
10.1109/tit.2020.2997329
发表时间:
2021-06-01
期刊:
IEEE TRANSACTIONS ON INFORMATION THEORY
影响因子:
2.5
作者:
Cheraghchi, Mahdi;Ribeiro, Joao
通讯作者:
Ribeiro, Joao

数据更新时间:{{ references.updateTime }}

Alexander Barg
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓