喵ID:0y7WVv免责声明

Bayesian Analysis for Mixture of Latent Variable Hidden Markov Models with Multivariate Longitudinal data

潜变量隐马尔可夫模型与多元纵向数据混合的贝叶斯分析

基本信息

DOI:
10.1016/j.csda.2018.08.004
发表时间:
--
影响因子:
1.8
通讯作者:
唐年胜
中科院分区:
数学3区
文献类型:
--
作者: 夏业茂;唐年胜研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Latent variable hidden Markov models (LVHMMs) are important statistical methods in exploring the possible heterogeneity of data and explaining the pattern of subjects moving from one group to another over time. Classic subject- and/or time-homogeneous assumptions on transition matrices in transition model as well as the emission distribution in the observed process may be inappropriate to interpret heterogeneity at the subject level. For this end, a general extension of LVHMM is proposed to address the heterogeneity of multivariate longitudinal data both at the subject level and the occasion level. The main modeling strategy is that the observed time sequences are first grouped into different clusters, and then within each cluster the observed sequences are formulated via latent variable hidden Markov model. The local heterogeneity at the occasion level is characterized by the distribution related to the latent states, while the global heterogeneity at the subject level is identified with the finite mixture model. Compared to the existing methods, an appeal underlying the proposal is its capacity of accommodating non-homogeneous patterns of state sequences and emission distributions across the subjects simultaneously. As a result, the proposal provides a comprehensive framework for exploring various kinds of relevance among the multivariate longitudinal data. Within the Bayesian paradigm, Markov Chains Monte Carlo (MCMC) method is used to implement posterior analysis. Gibbs sampler is used to draw observations from the related full conditionals and posterior inferences are carried out based on these simulated observations. Empirical results including simulation studies and a real example are used to illustrate the proposed methodology
潜在变量隐马尔可夫模型(LVHMMs)是探索数据可能的异质性以及解释个体随时间从一个组转移到另一个组的模式的重要统计方法。转移模型中对转移矩阵以及观测过程中的发射分布的经典的个体和/或时间同质性假设可能不适合解释个体层面的异质性。为此,提出了一种对LVHMM的通用扩展,以解决多变量纵向数据在个体层面和时点层面的异质性。主要的建模策略是,首先将观测到的时间序列分组到不同的簇中,然后在每个簇内通过潜在变量隐马尔可夫模型构建观测序列。时点层面的局部异质性由与潜在状态相关的分布来表征,而个体层面的全局异质性通过有限混合模型来识别。与现有方法相比,该方法的一个吸引人之处在于它能够同时适应个体间状态序列和发射分布的非同质模式。因此,该方法为探索多变量纵向数据之间的各种相关性提供了一个综合框架。在贝叶斯范式内,使用马尔可夫链蒙特卡罗(MCMC)方法进行后验分析。使用吉布斯采样器从相关的全条件分布中抽取观测值,并基于这些模拟观测值进行后验推断。包括模拟研究和一个实际例子在内的实证结果用于说明所提出的方法
参考文献(0)
被引文献(0)

数据更新时间:{{ references.updateTime }}

唐年胜
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓