双重靶向CYP11B2及盐皮质激素受体用以治疗充血性心衰

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    81872739
  • 项目类别:
    面上项目
  • 资助金额:
    57.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    H3401.合成药物化学
  • 结题年份:
    2022
  • 批准年份:
    2018
  • 项目状态:
    已结题
  • 起止时间:
    2019-01-01 至2022-12-31

项目摘要

To prevent the deleterious effects of excessive aldosterone in inducing congestive heart failure, it was proposed innovatively to inhibit the biosynthesis of aldosterone and to block the downstream signal transduction simultaneously via dual-targeting CYP11B2 and mineralocorticoid receptor (MR) in order to treat congestive heart failure in synergism and avoid drug resistance caused by accumulation of aldosterone and up-regulation of corticosterone. In a preliminary experiment in rats with heart failure, more improvement of heart functions was observed for the combinatory application of MR antagonist Eplerenone and CYP11B2 inhibitor HQZ95 compared to solo applications of each compound. In the proposed project, this innovative strategy will be further explored by designing and synthesizing selective aldosterone inhibitor simultaneously antagonizing MR via rational design of multi-targeting agents based on comparison of target crystal structures and pharmacophore models. Such dual-targeting compounds are expected to show anticipated efficacy, but to avoid potential off-target effects and drug-drug interactions. The mechanism and efficacy of these compounds on treatment of heart failure and avoidance of resistance will also be studied in animal models. This project is promising in afford new drugs with novel mechanisms in treating heart failure, and, more importantly, a validation of therapeutic concept that blockage of both biosynthesis and downstream signal transduction is superior, which could be applied to other treatment areas.
为彻底阻断过量的醛固酮导致充血性心衰的病理作用,我们创新性地提出双重靶向CYP11B2及盐皮质激素受体(MR),来同时抑制醛固酮的生物合成并拮抗其下游信号传导,以期协同治疗充血性心衰并避免因醛固酮蓄积或皮质甾酮上调而产生的耐药。在大鼠心衰模型预试验中,联合应用MR拮抗剂依普利酮和CYP11B2抑制剂HQZ95显示出较其分别单独应用更强的心脏保护作用。本项目拟进一步验证以上科学假说,通过开拓结合晶体结构对比和药效团模型的多靶点药物设计手段,来设计与合成能实现联合用药功效的单分子双靶点化合物,以期降低与联合用药相关的潜在的脱靶效应和药物-药物相互作用的风险。并将在动物模型中深入探讨这些双靶点化合物治疗心衰和心肌纤维化以及避免耐药性产生的机制与功效。这一研究不但可以为治疗充血性心衰开发新作用机制的创新药物,而且能够验证同时阻断生物合成及下游信号传导的治疗策略,以使之有望推广到其他疾病治疗领域。

结项摘要

充血性心衰是一种具有高发病率、高死亡率并缺乏有效药物疗法的严重疾病。而过量醛固酮在充血性心衰的发生和发展过程中扮演着重要的角色。为彻底阻断过量的醛固酮导致充血性心衰的病理作用,我们创新性地提出双重靶向醛固酮合成酶(CYP11B2)及盐皮质激素受体(MR),来同时抑制醛固酮的生物合成并拮抗其下游信号传导,以期协同治疗充血性心衰并避免因醛固酮蓄积或皮质甾酮上调而产生的耐药。通过晶体结构对比和药效团模型的联合使用,我们设计了苯并[f][1,4]氧氮杂䓬-5(2H)-酮类、吡啶取代的甲撑苯并异恶唑类及六氢甲撑咔唑类三个系列化合物。其对于CYP11B2和MR双靶点均表现出较好的抑制活性,并对相应的同源酶11羟化酶及糖皮质激素受体显示出较好的选择性。由此为选择性单分子多靶点化合物的理性设计探索了创新策略,并对其有效性和实用性进行验证。代表性化合物5X在大鼠体内表现出良好的药代动力学性质,并在阿霉素诱导的慢性心衰大鼠模型中,对于血浆及心脏组织中醛固酮浓度的具有显著的降低作用,而对糖皮质激素的生物合成没有产生消极影响。通过心电图监测、检验B型脑钠肽和心肌羟脯氨酸的血浆水平以及测定血流动力学参数表明化合物5X对于慢性心衰有较好的治疗作用。该研究不但可以为治疗充血性心衰开发新作用机制的创新药物,而且探索了同时阻断内源性调控分子信号传导途径中的两个重要节点,也就是生物合成和受体结合,相对于单一调节的优越性,例如:阻断后门路径以改善治疗效果及避免耐药性等。为目前临床上使用的众多类似的单点治疗途径提供进一步优化的线索,有望推广到其他疾病治疗领域。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(4)
Design, Synthesis, and Biological Evaluations of Pyridyl 4,5,6,7- Tetrahydro-4,7-Methanobenzo[d]isoxazoles as Potent and Selective Inhibitors of 11β-Hydroxylase
吡啶基 4,5,6,7-四氢-4,7-MethanoBenz[d]异恶唑作为 11β-羟化酶的有效和选择性抑制剂的设计、合成和生物学评价
  • DOI:
    10.1021/acs.jmedchem.2c01037
  • 发表时间:
    2022
  • 期刊:
    Journal of Medicinal Chemistry
  • 影响因子:
    7.3
  • 作者:
    Lina Yin;Youtian Pan;Yuanyuan Xue;Xiaoli Chen;Taiyun You;Jiahui Huang;Qihao Xu;Qingzhong Hu
  • 通讯作者:
    Qingzhong Hu
Design, synthesis and biological evaluation of pyridyl substituted benzoxazepinones as potent and selective inhibitors of aldosterone synthase
作为醛固酮合酶有效和选择性抑制剂的吡啶基取代苯并氮杂酮类化合物的设计、合成和生物学评价
  • DOI:
    10.1016/j.cclet.2020.11.021
  • 发表时间:
    2021
  • 期刊:
    Chinese Chemical Letters
  • 影响因子:
    9.1
  • 作者:
    Zhu Haichao;Liu Meihua;Li Haiyan;Guan Ting;Zhang Qi;Chen Yang;Liu Yingxiang;Hartmann Rolf R.;Yin Lina;Hu Qingzhong
  • 通讯作者:
    Hu Qingzhong
Natural products in pursuing novel therapies of nonalcoholic fatty liver disease and steatohepatitis
天然产物探索非酒精性脂肪肝和脂肪性肝炎的新疗法
  • DOI:
    10.1016/j.drudis.2022.103471
  • 发表时间:
    2023
  • 期刊:
    Drug Discovery Today
  • 影响因子:
    7.4
  • 作者:
    Li Haiyan;Guan Ting;Qin Shi;Xu Qihao;Yin Lina;Hu Qingzhong
  • 通讯作者:
    Hu Qingzhong
Chimera induced protein degradation: PROTACs and beyond
嵌合体诱导的蛋白质降解:PROTAC 及其他
  • DOI:
    10.1016/j.ejmech.2020.112494
  • 发表时间:
    2020
  • 期刊:
    European Journal of Medicinal Chemistry
  • 影响因子:
    6.7
  • 作者:
    Yin Lina;Hu Qingzhong
  • 通讯作者:
    Hu Qingzhong
Manipulations of phenylnorbornyl palladium species for multicomponent construction of a bridged polycyclic privileged scaffold
操纵苯基降冰片基钯物质用于桥联多环优先支架的多组分构建
  • DOI:
    10.1038/s42004-022-00759-4
  • 发表时间:
    2022-10-29
  • 期刊:
    Communications Chemistry
  • 影响因子:
    5.9
  • 作者:
    Yin, Lina;Guan, Ting;Cheng, Jie;Pan, Dongchao;Lu, Jinyang;Huang, Jiahui;Wu, Jiaqi;Chen, Xiaoli;You, Taiyun;Huo, Xuting;He, Yuting;Pang, Jiayun;Hu, Qingzhong
  • 通讯作者:
    Hu, Qingzhong

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码