基于二维磷烯异质结的外延生长制备及其电子结构研究
项目介绍
AI项目解读
基本信息
- 批准号:21872100
- 项目类别:面上项目
- 资助金额:66.0万
- 负责人:
- 依托单位:
- 学科分类:B0203.表面化学
- 结题年份:2022
- 批准年份:2018
- 项目状态:已结题
- 起止时间:2019-01-01 至2022-12-31
- 项目参与者:张嘉霖; 向都; 顾成鼎; 胡泽华; 郑越; 孙硕; 雷博;
- 关键词:
项目摘要
The research on two-dimensional (2D) layered materials with diverse electronic properties has rapidly developed. Recently, van der Waals heterostructures, which are vertical stacks of multiple 2D materials layer by layer, have created a new paradigm in materials science. The layers in the van der Waals heterostructures are held together by weak van der Waals forces and the combination of different 2D materials offers a platform for exploring new physics and devices with new architectures. However, up to now, most of the van der Waals heterostructures are realized by mechanical transfer using scotch tape. Although this method can produce high quality heterostructures suitable for lab research, the lack of scalability, the poor output, the low controllability of the alignment between different layers, as well as the presence of possible contaminations during the complicated transfer process limit its applications. .For the transition from the realm of fundamental research to practical applications, a facial and scalable synthesis approach for the construction of 2D heterostructures need to be developed. An alternative way to fabricate the vertical 2D heterostructures with clean and atomically sharp interfaces as well as good scalability is the direct growth of one kind of 2D material onto another. Despite the considerable efforts and some successful examples to date, the realization of the bottom up fabricated vertical heterostructures are mainly limited to stacks between two transition metal dichalcogenides (TMDs), or BN/Gr. The direct growth of 2D vertical stacks based on other 2D members are rarely reported, e.g., phosphorus based 2D vertical heterostructures. Due to its intriguing physical properties, hybridization of phosphorene with other 2D members could provide opportunities of novel electronic and optoelectronic devices, e.g. stacking the p-type phosphorene and n-type TMDs to construct vertical p-n junctions, inserting BP between two graphene layers to investigate its performance as a tunnel barrier, or studying the photocurrent generation process on phosphorene based heterostructures, etc. .Although conceptually simple, the growth of phosphorene based vertical heterostructures or even the phosphorene itself is a considerable challenge. To date, only the growth of single layer blue phosphorus (BlueP) has been realized on Au(111). The challenges for the growth of phosphorene lies in that (1) the formation of phosphorene is very sensitive to the substrate, strong interaction with phosphorus will break up the phosphorus flakes into nanoclusters or even single atoms and (2) atomically thin phosphorus are too delicate, water and oxygen may induce the oxidation of few phosphorus layers in ambient environment. To grow phosphorene as well as phosphorene based heterostructures, it is therefore essential to select substrates with relatively weak interactions with phosphorus and perform the experiment in the ultrahigh vacuum (UHV) conditions to avoid the undesired contaminations such as water and oxygen. Moreover, special attention should be paid to select the substrates with appropriate symmetry and better matched lattice constant. .This project will be carried out through three main interlinked sub-projects: (1) Structural characterization of the as-grown BlueP based vertical heterostructures by low-temperature scanning tunnelling microscopy (LT-STM), in-situ X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy (XPS/UPS) and angle-resolved photoemission spectroscopy (ARPES); (2) Development of transfer technology and the fabrication of FETs devices to evaluate the charge transport properties and optoelectronic properties of the as-grown BlueP based vertical structures; (3) Use STS as a probe to understand the electrical and electronic properties of the vertical heterostructures.
二维磷应用的一个巨大挑战是难以实现薄层磷尤其是单层磷膜的自下而上的高质量大面积制备。实验研究表明,薄层磷在大气中由于水氧的存在会发生氧化。而磷生长对衬底也具有很强的依赖性。太弱的磷-衬底作用不足以稳定磷吸附体系,而太强的磷-衬底相互作用又会打破磷-磷键,不利于二维磷的生长。选择二维材料作为衬底既避免了磷-衬底之间成键对二维磷生长的抑制,还可以完成二维磷和二维磷范德华异质结的一步生长。本项目拟通过超高真空分子束外延生长的方法在不同性质的二维衬底上:绝缘体(比如h-BN),半导体(比如MoS2))以及半金属(比如石墨烯)制备二维磷异质结,并通过结合低温扫描隧道显微镜,利用基于同步辐射光源的光电子能谱,软/硬X-射线近边/拓展边吸收光谱技术,在原子/分子尺度研究二维磷异质结的微观形貌,电子结构和电学性能。为制备大面积高质量的基于二维磷的异质结提供指导和依据,探索适用于不同功能器件的异质结体系。
结项摘要
二维层状磷(包括黑磷,蓝磷)是新兴的二维材料,最近成为电子学和电子器件研究的前沿热点。本课题组利用超高真空扫描隧道显微镜(STM)、光电子能谱(XPS/UPS)并结合先进的同步辐射技术如角分辨光电子能谱(ARPES)和近边吸收精细结构(NEXAFS)等技术,通过分子束外延生长的方法,在超高真空环境中在二维材料衬底上原位外延制备二维磷,并对不同阶段不同衬底表面磷的微观形貌和电子结构进行精确的表征,深入理解衬底及制备环境对二维磷生长的影响。从原子尺度上理解其生长机理从而选择合适的二维磷生长衬底和条件,为基于二维磷异质结的大面积生长提供理论基础和技术手段。这些工作具有一定的原始创新性,其中,我们首次报道采用硅插层的办法,实现了分子束外延生长大面积高质量的蓝磷单层薄膜, 在原子尺度上探索了蓝磷薄膜的氧化机制,并发展了基于二维黑磷薄膜的光电器件的应用及器件性能探索研究。这些工作总结在标注了本项目号的40 篇SCI论文中。同时也基于本课题组在二维层状磷的工作,获得了2021年Nano Research Young Innovators (NR45) Award。通过本项目的研究,初步获得了在原子尺度上理解二维层状磷生长机理,并为选择合适的二维磷生长衬底和条件提供了坚实的实验和理论基础。在项目结题后,我们还将继续相关的研究工作,细化一些研究要点,争取取得更多的成绩。
项目成果
期刊论文数量(40)
专著数量(0)
科研奖励数量(2)
会议论文数量(0)
专利数量(0)
Controlling phase transition in WSe2 towards ideal n-type transistor
控制 WSe2 向理想 n 型晶体管的相变
- DOI:10.1007/s12274-020-3275-x
- 发表时间:2021
- 期刊:Nano Research
- 影响因子:9.9
- 作者:Zheng Y;Han C;Xiang D;Zhang JL;Guo R;Wang WH;Liu T;Wang YN;Gao J;Ni ZH;Chen Wei
- 通讯作者:Chen Wei
Band-tailored van der Waals Heterostructure for multilevel memory and artificial synapse
用于多级记忆和人工突触的带状定制范德华异质结构
- DOI:10.1002/inf2.12230
- 发表时间:2021
- 期刊:InfoMat
- 影响因子:22.7
- 作者:Wang YN;Zheng Y;Gao J;Jin TY;Li EL;Lian X;Pan X;Han C;Chen HP;Chen Wei
- 通讯作者:Chen Wei
Atomic-Scale Local Work Function Characterizations of Br Islands on Cu(111)
Cu(111) 上 Br 岛的原子尺度局域功函数表征
- DOI:10.4271/2018-01-0718
- 发表时间:2021
- 期刊:Journal of Physical Chemistry C
- 影响因子:3.7
- 作者:Huang Zichao;Lin Yuxuan;Han Cheng;Sun Yiyang;Wu Kai;Chen Wei
- 通讯作者:Chen Wei
Designing Kagome Lattice from Potassium Atoms on Phosphorus Gold Surface Alloy
磷金表面合金上钾原子设计Kagome晶格
- DOI:10.1021/acs.nanolett.0c02426
- 发表时间:2020
- 期刊:Nano Lett
- 影响因子:--
- 作者:Sun S;Zhao ST;Luo YZ;Gu XY;Tadich A;Qi DC;Lian X;Ma ZR;Zheng Y;Gu CD;Zhang JL;Li ZY;Chen Wei
- 通讯作者:Chen Wei
Flexible neuromorphic electronics based on low-dimensional materials
基于低维材料的柔性神经形态电子器件
- DOI:10.1007/s40843-021-1979-3
- 发表时间:2022
- 期刊:Science China Materials
- 影响因子:--
- 作者:Jin Tengyu;Gao Jing;Wang Yanan;Chen Wei
- 通讯作者:Chen Wei
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi || "--"}}
- 发表时间:{{ item.publish_year || "--" }}
- 期刊:{{ item.journal_name }}
- 影响因子:{{ item.factor || "--"}}
- 作者:{{ item.authors }}
- 通讯作者:{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ patent.updateTime }}
其他文献
Laser Immunotherapy:Novel Modality to Treat Cancer through Specific Antitumor Immune Response
激光免疫疗法——通过特异性抗肿瘤免疫反应治疗癌症的新方法
- DOI:--
- 发表时间:2024-09-14
- 期刊:
- 影响因子:--
- 作者:李晓松;陈伟
- 通讯作者:陈伟
西藏尕尔穷—嘎拉勒铜金矿集区侵入岩岩石地球化学特征及其地质意义
- DOI:10.1055/s-0030-1259034
- 发表时间:2013
- 期刊:地质与勘探
- 影响因子:--
- 作者:张志;唐菊兴;李志军;杨毅;胡正华;姚晓峰;宋俊龙;陈伟;王红星;杨欢欢
- 通讯作者:杨欢欢
WMSNs节点不相交多路径QoS路由算法
- DOI:--
- 发表时间:2012
- 期刊:中国矿业大学学报
- 影响因子:--
- 作者:孙仁科;丁恩杰;阮娜;江海峰;陈伟
- 通讯作者:陈伟
沉垫自升式平台就位过程运动响应频域与时域分析
- DOI:10.14056/j.cnki.naoe.2016.01.001
- 发表时间:2016
- 期刊:船舶与海洋工程
- 影响因子:--
- 作者:张兆德;王玉红;陈伟
- 通讯作者:陈伟
不平衡负载时三相逆变器控制方法研究
- DOI:10.1371/journal.pmed.1002691
- 发表时间:2014
- 期刊:电力电子技术
- 影响因子:--
- 作者:陈伟;肖飞;王恒利;刘计龙
- 通讯作者:刘计龙
其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi || "--" }}
- 发表时间:{{ item.publish_year || "--"}}
- 期刊:{{ item.journal_name }}
- 影响因子:{{ item.factor || "--" }}
- 作者:{{ item.authors }}
- 通讯作者:{{ item.author }}
内容获取失败,请点击重试
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:
AI项目摘要
AI项目思路
AI技术路线图
请为本次AI项目解读的内容对您的实用性打分
非常不实用
非常实用
1
2
3
4
5
6
7
8
9
10
您认为此功能如何分析更能满足您的需求,请填写您的反馈:
陈伟的其他基金
二维材料低功耗人工神经突触器件的界面调控技术
- 批准号:62274118
- 批准年份:2022
- 资助金额:59 万元
- 项目类别:面上项目
构建二维材料欧姆接触的界面调控技术
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:联合基金项目
原位近常压光电子能谱技术于能源小分子活化基础问题的研究
- 批准号:91645102
- 批准年份:2016
- 资助金额:75.0 万元
- 项目类别:重大研究计划
二维黑磷材料的界面调控及相关光电功能器件的研究
- 批准号:21573156
- 批准年份:2015
- 资助金额:67.0 万元
- 项目类别:面上项目
相似国自然基金
{{ item.name }}
- 批准号:{{ item.ratify_no }}
- 批准年份:{{ item.approval_year }}
- 资助金额:{{ item.support_num }}
- 项目类别:{{ item.project_type }}
相似海外基金
{{
item.name }}
{{ item.translate_name }}
- 批准号:{{ item.ratify_no }}
- 财政年份:{{ item.approval_year }}
- 资助金额:{{ item.support_num }}
- 项目类别:{{ item.project_type }}